This paper discusses the error estimation of the last-column-block-augmentednorthwest-corner truncation (LC-block-augmented truncation, for short) ofblock-structured Markov chains (BSMCs) in continuous time. We first deriveupper bounds for the absolute difference between the time-averaged functionalsof a BSMC and its LC-block-augmented truncation, under the assumption that theBSMC satisfies the general $f$-modulated drift condition. We then establishcomputable bounds for a special case where the BSMC is exponentially ergodic.To derive such computable bounds for the general case, we propose a method thatreduces BSMCs to be exponentially ergodic. We also apply the obtained bounds tolevel-dependent quasi-birth-and-death processes (LD-QBDs), and discuss theproperties of the bounds through the numerical results on an M/M/$s$ retrialqueue, which is a representative example of LD-QBDs. Finally, we presentcomputable perturbation bounds for the stationary distribution vectors ofBSMCs.
展开▼
机译:本文讨论了块状结构马尔可夫链(BSMC)在连续时间内最后一列增强的西北角截断(简称LC截断的误差)的估计。我们首先导出BSMC的时间平均函数与其LC块增强的截断之间的绝对差的上限,假设BSMC满足一般的$ f $调制漂移条件。然后,我们为BSMC呈指数遍历的特殊情况建立可计算范围。为得出一般情况的可计算范围,我们提出了一种将BSMC呈指数遍历的方法。我们还将获得的边界应用于与水平相关的准生死过程(LD-QBDs),并通过在M / M / $ s $重试队列上的数值结果讨论边界的性质,这是具有代表性的示例。 LD-QBD。最后,我们给出了BSMCs平稳分布向量的可计算扰动界。
展开▼