首页> 外文OA文献 >Crowd Counting via Weighted VLAD on Dense Attribute Feature Maps
【2h】

Crowd Counting via Weighted VLAD on Dense Attribute Feature Maps

机译:在密集属性特征映射上通过加权VLaD进行人群计数

摘要

Crowd counting is an important task in computer vision, which has manyapplications in video surveillance. Although the regression-based framework hasachieved great improvements for crowd counting, how to improve thediscriminative power of image representation is still an open problem.Conventional holistic features used in crowd counting often fail to capturesemantic attributes and spatial cues of the image. In this paper, we proposeintegrating semantic information into learning locality-aware feature sets foraccurate crowd counting. First, with the help of convolutional neural network(CNN), the original pixel space is mapped onto a dense attribute feature map,where each dimension of the pixel-wise feature indicates the probabilisticstrength of a certain semantic class. Then, locality-aware features (LAF) builton the idea of spatial pyramids on neighboring patches are proposed to exploremore spatial context and local information. Finally, the traditional VLADencoding method is extended to a more generalized form in which diversecoefficient weights are taken into consideration. Experimental results validatethe effectiveness of our presented method.
机译:人群计数是计算机视觉中的重要任务,它在视频监控中有许多应用。尽管基于回归的框架在人群计数方面取得了很大的进步,但是如何提高图像表示的区分能力仍然是一个悬而未决的问题。人群计数中使用的常规整体特征通常无法捕获图像的语义属性和空间线索。在本文中,我们建议将语义信息集成到学习位置感知的功能集中,以进行准确的人群计数。首先,借助卷积神经网络(CNN),将原始像素空间映射到一个密集的属性特征图上,其中,逐像素特征的每个维数都表示某个语义类的概率强度。然后,提出了基于邻近斑块上的空间金字塔思想的局部感知特征(LAF),以探索更多的空间背景和局部信息。最后,将传统的VLADencoding方法扩展为考虑了不同系数权重的更通用形式。实验结果验证了我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号