首页> 外文OA文献 >Co-interest Person Detection from Multiple Wearable Camera Videos
【2h】

Co-interest Person Detection from Multiple Wearable Camera Videos

机译:多个可穿戴摄像机视频中的共同兴趣人物检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wearable cameras, such as Google Glass and Go Pro, enable video datacollection over larger areas and from different views. In this paper, we tacklea new problem of locating the co-interest person (CIP), i.e., the one who drawsattention from most camera wearers, from temporally synchronized videos takenby multiple wearable cameras. Our basic idea is to exploit the motion patternsof people and use them to correlate the persons across different videos,instead of performing appearance-based matching as in traditional videoco-segmentation/localization. This way, we can identify CIP even if a group ofpeople with similar appearance are present in the view. More specifically, wedetect a set of persons on each frame as the candidates of the CIP and thenbuild a Conditional Random Field (CRF) model to select the one with consistentmotion patterns in different videos and high spacial-temporal consistency ineach video. We collect three sets of wearable-camera videos for testing theproposed algorithm. All the involved people have similar appearances in thecollected videos and the experiments demonstrate the effectiveness of theproposed algorithm.
机译:可穿戴式摄像头(例如Google Glass和Go Pro)可在更大的区域和不同的视角收集视频数据。在本文中,我们解决了一个新的问题,即从多个可穿戴式摄像机拍摄的时间同步视频中吸引大多数摄像机使用者的注意力,以找到共同利益者(CIP)。我们的基本思想是利用人物的运动模式,并使用它们将不同视频中的人物相关联,而不是像传统的视频联合细分/本地化一样执行基于外观的匹配。这样,即使视图中存在一群外观相似的人,我们也可以识别CIP。更具体地说,我们在每帧上检测一组人作为CIP的候选者,然后建立条件随机场(CRF)模型以选择在不同视频中具有一致运动模式并且每个视频中时空一致性高的人。我们收集了三套可穿戴式摄像机视频,以测试该算法。所有参与人员在所收集的视频中都有相似的外表,并且实验证明了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号