首页> 外文OA文献 >Directive Surface Plasmons on Tunable Two-Dimensional Hyperbolic Metasurfaces and Black Phosphorus: Green's Function and Complex Plane Analysis
【2h】

Directive Surface Plasmons on Tunable Two-Dimensional Hyperbolic Metasurfaces and Black Phosphorus: Green's Function and Complex Plane Analysis

机译:关于可调二维双曲线的指数表面等离子体   超颖表面和黑磷:绿色的功能和复杂的平面   分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the electromagnetic response of two- and quasi-two-dimensionalhyperbolic materials, on which a simple dipole source can excite awell-confined and tunable surface plasmon polariton (SPP). The analysis isbased on the Green's function for an anisotropic two-dimensional surface, whichnominally requires the evaluation of a two-dimensional Sommerfeld integral. Weshow that for the SPP contribution this integral can be evaluated efficientlyin a mixed continuous-discrete form as a continuous spectrum contribution(branch cut integral) of a residue term, in distinction to the isotropic case,where the SPP is simply given as a discrete residue term. The regime of strongSPP excitation is discussed, and complex-plane singularities are identified,leading to physical insight into the excited SPP. We also present a stationaryphase solution valid for large radial distances. Examples are presented usinggraphene strips to form a hyperbolic metasurface, and thin-film blackphosphorus. The Green's function and complex-plane analysis developed allowsfor the exploration of hyperbolic plasmons in general 2D materials.
机译:我们研究了二维和准二维双曲线材料的电磁响应,在这种材料上,简单的偶极子源可以激发有限且可调谐的表面等离子体激元极化子(SPP)。该分析基于各向异性二维曲面的格林函数,该函数通常需要评估二维Sommerfeld积分。我们表明,对于SPP贡献,该积分可以以混合连续离散形式作为残差项的连续谱贡献(分支切分积分)进行有效评估,这与各向同性情况不同,其中SPP只是简单地作为离散残差给出术语。讨论了强SPP激发的机制,并识别了复杂平面的奇点,从而导致了对激发的SPP的物理洞察。我们还提出了适用于较大径向距离的固定相解决方案。使用石墨烯条形成双曲线的超表面和薄膜黑磷呈现了一些例子。格林函数的开发和复杂平面分析的发展允许探索一般二维材料中的双曲等离激元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号