首页> 外文OA文献 >Non-modal linear stability analysis of miscible viscous fingering in porous media
【2h】

Non-modal linear stability analysis of miscible viscous fingering in porous media

机译:混合粘性指法的非模态线性稳定性分析   多孔介质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The non-modal linear stability of miscible viscous fingering in a twodimensional homogeneous porous medium has been investigated. The linearizedperturbed equations for Darcy's law coupled with a convection-diffusionequation is discretized using finite difference method. The resultant initialvalue problem is solved by fourth order Runge-Kutta method, followed by asingular value decomposition of the propagator matrix. Particular attention isgiven to the transient behavior rather than the long-time behavior ofeigenmodes predicted by the traditional modal analysis. The transient behaviorsof the response to external excitations and the response to initial conditionsare studied by examining the $\epsilon-$pseudospectra structures and thelargest energy growth function. With the help of non-modal stability analysiswe demonstrate that at early times the displacement flow is dominated bydiffusion and the perturbations decay. At later times, when convectiondominates diffusion, perturbations grow. Furthermore, we show that the dominantperturbation that experiences the maximum amplification within the linearregime lead to the transient growth. These two important features werepreviously unattainable in the existing linear stability methods for miscibleviscous fingering. To explore the relevance of the optimal perturbationobtained from non-modal analysis, we performed direct numerical simulationsusing a highly accurate pseudo-spectral method. Further, a comparison of thepresent stability analysis with existing modal and initial value approach isalso presented. It is shown that the non-modal stability results are in betteragreement, than the other existing stability analyses, with those obtained fromdirect numerical simulations.
机译:已经研究了二维均质多孔介质中可混溶粘性指状物的非模态线性稳定性。使用有限差分法离散达西定律的线性化摄动方程和对流扩散方程。通过四阶Runge-Kutta方法解决所得的初值问题,然后对传播矩阵进行奇异值分解。特别要注意的是瞬态行为,而不是传统模态分析所预测的本征模式的长期行为。通过考察ε\ε-$谱结构和最大的能量增长函数,研究了对外部激发的响应和对初始条件的响应的瞬态行为。借助非模态稳定性分析,我们证明了在早期位移流主要由扩散引起,并且扰动衰减。后来,当对流主导扩散时,扰动就会增加。此外,我们表明,在线性区域内经历最大放大的显性扰动会导致瞬时增长。这两个重要特征以前在用于混相粘性指法的现有线性稳定性方法中是无法实现的。为了探索从非模态分析获得的最佳摄动的相关性,我们使用高精度伪谱方法进行了直接数值模拟。此外,还给出了当前稳定性分析与现有模态和初始值方法的比较。结果表明,与其他现有的稳定性分析相比,非模态稳定性结果与直接数值模拟获得的结果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号