首页> 外文OA文献 >The Propensity Score Estimation in the Presence of Length-biased Sampling: A Nonparametric Adjustment Approach
【2h】

The Propensity Score Estimation in the Presence of Length-biased Sampling: A Nonparametric Adjustment Approach

机译:长度偏差存在下的倾向得分估计   抽样:非参数调整方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pervasive use of prevalent cohort studies on disease duration,increasingly calls for appropriate methodologies to account for the biases thatinvariably accompany samples formed by such data. It is well-known, forexample, that subjects with shorter lifetime are less likely to be present insuch studies. Moreover, certain covariate values could be preferentiallyselected into the sample, being linked to the long-term survivors. The existingmethodology for estimation of the propensity score using data collected onprevalent cases requires the correct conditional survival/hazard function giventhe treatment and covariates. This requirement can be alleviated if the diseaseunder study has stationary incidence, the so-called stationarity assumption. Wepropose a nonparametric adjustment technique based on a weighted estimatingequation for estimating the propensity score which does not require modelingthe conditional survival/hazard function when the stationarity assumptionholds. Large sample properties of the estimator is established and its smallsample behavior is studied via simulation.
机译:关于疾病持续时间的普遍队列研究的广泛使用,越来越需要适当的方法来解释由这些数据形成的样本总是伴随的偏差。例如,众所周知,寿命较短的受试者不太可能出现在此类研究中。此外,可以将某些协变量值优先选择到样本中,并与长期幸存者联系起来。现有的使用流行病案例收集的数据来评估倾向评分的方法,需要根据给定的治疗方法和协变量,使用正确的条件生存/危险函数。如果所研究的疾病具有固定的发病率,即所谓的平稳性假设,则可以减轻这一要求。我们提出了一种基于加权估计方程的非参数调整技术来估计倾向得分,当平稳性假设成立时,不需要对条件生存/危险函数进行建模。建立估计量的大样本属性,并通过仿真研究其小样本行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号