首页> 外文OA文献 >The hyperbola rectification from Maclaurin to Landen and the Lagrange-Legendre transformation for the elliptic integrals
【2h】

The hyperbola rectification from Maclaurin to Landen and the Lagrange-Legendre transformation for the elliptic integrals

机译:从maclaurin到Landen的双曲线整流和   椭圆积分的拉格朗日 - 勒让德变换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article describes the main mathematical researches performed, in Englandand in the Continent between 1742-1827, on the subject of hyperbolarectification, thereby adding some of our contributions. We start with theMaclaurin inventions on Calculus and their remarkable role in the early mid1700s; next we focus a bit on his evaluation, 1742, of the hyperbolic excess,explaining the true motivation behind his research. To hisgeometrical-analytical treatment we attach ours, a purely analyticalalternative. Our hyperbola inquiry is then switched to John Landen, an amateurmathematician, who probably was writing more to fix his priorities than toexplain his remarkable findings. We follow him in the obscure proofs of histheorem on hyperbola rectification, explaining the links to Maclaurin and soon. With a chain of geometrical constructions, we attach our interpretation toLanden's treatment. Our modern analytical proof to his hyperbolic limit excess,by means of elliptic integrals of the first and second kind is also provided,and we demonstrate why the so called Landen transformation for the ellipticintegrals cannot be ascribed to him. Next, the subject leaves England for theContinent: the character of Lagrange is introduced, even if our interestconcerns only his 1785 memoir on irrational integrals, where the ArithmeticGeometric Mean, AGM, is established by him. Nevertheless, our objective is notthe AGM, but to detect the real source of the so-called Landen transformationfor elliptic integrals. In fact, Lagrange's paper encloses a differentialidentity stemming from the AGM: integrating it, we show how it could bepossible to arrive at the well-known Legendre recursive computation of a firstkind elliptic integral, which appeared in his Trait\'e, 1827, much after theLagrange's paper.
机译:本文介绍了在英格兰和1742-1827年间在欧洲大陆进行的有关双曲线矫正的主要数学研究,从而增加了我们的一些贡献。我们首先从Maclaurin在微积分上的发明及其在1700年代初期的杰出作用开始。接下来,我们将重点放在他对1742年双曲线过剩的评估上,以解释其研究背后的真正动机。对于几何分析处理,我们附加了纯粹的分析替代方法。然后,我们对双曲线的研究转向了一位业余数学家约翰·兰登(John Landen),他可能正在写更多的书来固定他的优先事项,而不是解释他的杰出发现。我们在关于双曲线矫正的定理定理的晦涩证明中跟随他,解释了与麦克劳林的联系,并很快进行了解释。通过一系列的几何构造,我们将对兰登的处理方式赋予了诠释。我们还通过第一类和第二类椭圆积分提供了关于他的双曲极限过量的现代分析证明,并且我们证明了为什么不能将所谓的椭圆积分的兰登变换归因于他。接下来,主题离开英格兰前往欧洲大陆:即使我们只关注他1785年关于非理性积分的回忆录(由他建立算术几何平均数AGM),拉格朗日的性格也得到了介绍。尽管如此,我们的目标不是AGM,而是检测椭圆积分的所谓Landen变换的真实来源。实际上,拉格朗日的论文包含了来自AGM的微分恒等式:对其进行积分,我们展示了如何实现对第一类椭圆积分的著名勒让德递归计算,这种计算出现在他1827年的《特雷特》中,在拉格朗日论文之后。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号