Binary neutron stars in circular orbits can be modeled as helicallysymmetric, i.e., stationary in a rotating frame. This symmetry gives rise to afirst integral of the Euler equation, often employed for constructingequilibrium solutions via iteration. For eccentric orbits, however, the lack ofhelical symmetry has prevented the use of this method, and the numericalrelativity community has often resorted to constructing initial data bysuperimposing boosted spherical stars without solving the Euler equation. Thespuriously excited neutron star oscillations seen in evolutions of such dataarise because such configurations lack the appropriate tidal deformations andare stationary in a linearly comoving---rather than rotating---frame. Weconsider eccentric configurations at apoapsis that are instantaneouslystationary in a rotating frame. We extend the notion of helical symmetry toeccentric orbits, by approximating the elliptical orbit of each companion asinstantaneously circular, using the ellipse's inscribed circle. The twoinscribed helical symmetry vectors give rise to approximate instantaneous firstintegrals of the Euler equation throughout each companion. We use theseintegrals as the basis of a self-consistent iteration of the Einsteinconstraints to construct conformal thin-sandwich initial data for eccentricbinaries. We find that the spurious stellar oscillations are reduced by atleast an order of magnitude, compared with those found in evolutions ofsuperposed initial data. The tidally induced oscillations, however, arephysical and qualitatively similar to earlier evolutions. Finally, we show howto incorporate radial velocity due to radiation reaction in our inscribedhelical symmetry vectors, which would allow one to obtain truly non-eccentricinitial data when our eccentricity parameter $e$ is set to zero.
展开▼
机译:圆形轨道上的双中子星可以建模为螺旋对称的,即静止在旋转框架中。这种对称性产生了通常用于通过迭代构造平衡解的欧拉方程的第一积分。但是,对于偏心轨道,由于缺乏螺旋对称性,因此无法使用该方法,并且数值相对论团体经常诉诸于通过叠加增强球形恒星而不求解欧拉方程来构造初始数据的过程。在这种数据的演化过程中看到了虚假激发的中子星振荡,因为这种结构缺乏适当的潮汐变形,并且在线性共动(而不是旋转)框架中保持静止。我们考虑在顶尖处的偏心配置,这些配置在旋转框架中是瞬时静止的。通过使用椭圆的内切圆逼近每个同伴的椭圆形轨道,我们将螺旋对称性的概念扩展到了偏心轨道。两个内接的螺旋对称矢量在每个伴随对象中产生了Euler方程的近似瞬时第一积分。我们使用这些积分作为爱因斯坦约束的自洽迭代的基础,以构造偏心二进制的保形薄夹心初始数据。我们发现,与在叠加的初始数据的演化中发现的杂散星体振荡相比,杂散的恒星振荡至少减少了一个数量级。然而,潮汐引起的振荡在物理上和质量上与早期的演化相似。最后,我们展示了如何将辐射反应引起的径向速度纳入我们的内切螺旋对称向量中,当我们将偏心率参数$ e $设置为零时,它将获得真正的非偏心初始数据。
展开▼