首页>
外文OA文献
>Stability of Numerical Methods for Jump Diffusions and Markovian Switching Jump Diffusions
【2h】
Stability of Numerical Methods for Jump Diffusions and Markovian Switching Jump Diffusions
展开▼
机译:跳跃扩散和马尔可夫数值方法的稳定性 切换跳跃扩散
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
This work focuses on stability analysis of numerical solutions to jumpdiffusions and jump diffusions with Markovian switching. Due to the use ofPoisson processes, using asymptotic expansions as in the usual approach oftreating diffusion processes does not work. Different from the existingtreatments of Euler-Maurayama methods for solutions of stochastic differentialequations, we use techniques from stochastic approximation. We analyze thealmost sure exponential stability and exponential $p$-stability. The benchmarktest model in numerical solutions, namely, one-dimensional linear scalar jumpdiffusion is examined first and easily verifiable conditions are presented.Then Markovian regime-switching jump diffusions are dealt with. Moreover,analysis on stability of numerical methods for linearizable andmulti-dimensional jump diffusions is carried out.
展开▼
机译:这项工作的重点是通过马尔可夫切换对跳扩散和跳扩散的数值解进行稳定性分析。由于使用了泊松过程,因此无法像对待扩散过程的常规方法那样使用渐近展开。与现有的用于随机微分方程解的Euler-Maurayama方法的处理方法不同,我们使用了随机近似技术。我们分析了几乎确定的指数稳定性和指数$ p $-稳定性。首先研究了数值解中的基准测试模型,即一维线性标量跳跃扩散,并给出了易于验证的条件,然后处理了马尔可夫状态切换跳跃扩散。此外,对线性化和多维跳跃扩散的数值方法的稳定性进行了分析。
展开▼