首页> 外文OA文献 >A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension
【2h】

A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension

机译:一种可实现性保持的不连续Galerkin方案   一个空间中线性动力学方程的基于熵的矩闭包   尺寸

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We implement a high-order numerical scheme for the entropy-based momentclosure, the so-called M$_N$ model, for linear kinetic equations in slabgeometry. A discontinuous Galerkin (DG) scheme in space along with astrong-stability preserving Runge-Kutta time integrator is a natural choice toachieve a third-order scheme, but so far, the challenge for such a scheme inthis context is the implementation of a linear scaling limiter when thenumerical solution leaves the set of realizable moments (that is, those momentsassociated with a positive underlying distribution). The difficulty for such alimiter lies in the computation of the intersection of a ray with the set ofrealizable moments. We avoid this computation by using quadrature to generate aconvex polytope which approximates this set. The half-space representation ofthis polytope is used to compute an approximation of the required intersectionstraightforwardly, and with this limiter in hand, the rest of the DG scheme isconstructed using standard techniques. We consider the resulting numericalscheme on a new manufactured solution and standard benchmark problems for bothtraditional M$_N$ models and the so-called mixed-moment models. Themanufactured solution allows us to observe the expected convergence rates andexplore the effects of the regularization in the optimization.
机译:对于基于几何的线性动力学方程,我们为基于熵的矩闭合实现了一个高阶数值方案,即所谓的M $ _N $模型。在空间中使用不连续的Galerkin(DG)方案以及保持高度稳定性的Runge-Kutta时间积分器是实现三阶方案的自然选择,但到目前为止,在这种情况下,这种方案的挑战是线性缩放的实现当数值解离开可实现矩集(即那些与正基础分布相关的矩)时,限制器。这种限制器的困难在于射线与一组可实现矩的交点的计算。我们通过使用正交生成近似该集合的凸多面体来避免这种计算。该多边形的半空间表示法用于直接计算所需交叉点的近似值,并且借助此限制器,可以使用标准技术来构造DG方案的其余部分。我们考虑了针对新的M $ _N $模型和所谓的混合矩模型的新制造解决方案和标准基准问题所产生的数值方案。所制造的解决方案使我们能够观察到预期的收敛速度,并探索优化中正则化的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号