首页> 外文OA文献 >Iterative Matrix Inversion Based Low Complexity Detection in Large/Massive MIMO Systems
【2h】

Iterative Matrix Inversion Based Low Complexity Detection in Large/Massive MIMO Systems

机译:基于迭代矩阵求逆的低复杂度检测   大型/大型mImO系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Linear detectors such as zero forcing (ZF) or minimum mean square error(MMSE) are imperative for large/massive MIMO systems for both the downlink anduplink scenarios. However these linear detectors require matrix inversion whichis computationally expensive for such huge systems. In this paper, we assertthat calculating an exact inverse is not necessary to find the ZF/MMSE solutionand an approximate inverse would yield a similar performance. This is possibleif the quantized solution calculated using the approximate inverse is same asthe one calculated using the exact inverse. We quantify the amount ofapproximation that can be tolerated for this to happen. Motivated by this, wepropose to use the existing iterative methods for obtaining low complexityapproximate inverses. We show that, after a sufficient number of iterations,the inverse using iterative methods can provide a similar error performance. Inaddition, we also show that the advantage of using an approximate inverse isnot limited to linear detectors but can be extended to non linear detectorssuch as sphere decoders (SD). An approximate inverse can be used for any SDthat requires matrix inversion. We prove that application of approximateinverse leads to a smaller radius, which in turn reduces the search spaceleading to reduction in complexity. Numerical results corroborate our claimthat using approximate matrix inversion reduces decoding complexity inlarge/massive MIMO systems with no loss in error performance.
机译:对于大型/大规模MIMO系统,对于下行链路和上行链路场景,诸如零强制(ZF)或最小均方误差(MMSE)之类的线性检测器势在必行。然而,这些线性检测器需要矩阵求逆,这对于如此庞大的系统在计算上是昂贵的。在本文中,我们认为计算精确的逆不是找到ZF / MMSE解的必要,而近似的逆将产生相似的性能。如果使用近似逆计算的量化解与使用精确逆计算的量化解相同,则这是可能的。我们量化这种情况可以容忍的近似值。因此,我们建议使用现有的迭代方法来获得低复杂度的近似逆。我们表明,经过足够数量的迭代,使用迭代方法的逆运算可以提供相似的错误性能。此外,我们还表明,使用近似逆的优势不仅限于线性检测器,还可以扩展到非线性检测器,例如球面解码器(SD)。近似逆可用于需要矩阵求逆的任何SD。我们证明了近似逆的应用导致较小的半径,从而减小了搜索空间,从而降低了复杂度。数值结果证实了我们的观点,即使用近似矩阵求逆可降低大型/大规模MIMO系统的解码复杂度,而不会降低错误性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号