It is proved that the median eigenvalues of every connected bipartite graph$G$ of maximum degree at most three belong to the interval $[-1,1]$ with asingle exception of the Heawood graph, whose median eigenvalues are$\pm\sqrt{2}$. Moreover, if $G$ is not isomorphic to the Heawood graph, then apositive fraction of its median eigenvalues lie in the interval $[-1,1]$. Thissurprising result has been motivated by the problem about HOMO-LUMO separationthat arises in mathematical chemistry.
展开▼
机译:证明每个连通度最大的三分二部图$ G $的中值特征值属于区间$ [-1,1] $,唯一例外是Heawood图,其中值特征值为$ \ pm \ sqrt {2}美元。此外,如果$ G $与Heawood图不是同构的,则其中位数特征值的正分数位于区间$ [-1,1] $中。这个令人惊讶的结果是由数学化学中出现的HOMO-LUMO分离问题引起的。
展开▼