首页> 外文OA文献 >The Proof that Maxwell Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations. The New Lorentz Invariant Field Equations
【2h】

The Proof that Maxwell Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations. The New Lorentz Invariant Field Equations

机译:具有3D E和B的maxwell方程的证明不是协变的   在洛伦兹变换上,但在标准变换。该   新的洛仑兹不变场方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper the Lorentz transformations (LT) and the standardtransformations (ST) of the usual Maxwell equations (ME) with thethree-dimensional (3D) vectors of the electric and magnetic fields, E and Brespectively, are examined using both the geometric algebra and tensorformalisms. Different 4D algebric objects are used to represent the usualobserver dependent and the new observer independent electric and magneticfields. It is found that the ST of the ME differ from their LT and consequentlythat the ME with the 3D E and B are not covariant upon the LT but upon the ST.The obtained results do not depend on the character of the 4D algebric objectsused to represent the electric and magnetic fields. The Lorentz invariant fieldequations are presented with 1-vectors E and B, bivectors E_{Hv} and B_{Hv} andthe abstract tensors, the 4-vectors E^{a} and B^{a}. All these quantities aredefined without reference frames, i.e., as absolute quantities. When some basishas been introduced, they are represented as coordinate-based geometricquantities comprising both components and a basis. It is explicitly shown thatthis geometric approach agrees with experiments, e.g., the Faraday disk, in allrelatively moving inertial frames of reference, which is not the case with theusual approach with the 3D E and B and their ST.
机译:在本文中,使用几何代数和几何学分别研究了电场和磁场的三维(3D)向量的常用麦克斯韦方程(ME)的洛伦兹变换(LT)和标准变换(ST)。张量形式主义。不同的4D代数对象用于表示通常与观察者相关的和与新观察者无关的电场和磁场。发现ME的ST与LT有所不同,因此具有3D E和B的ME并不是LT的协变量,而是依赖于ST。所得结果不依赖于用来表示的4D代数对象的特征。电场和磁场。洛伦兹不变场方程由1个向量E和B,双向量E_ {Hv}和B_ {Hv}以及抽象张量4个向量E ^ {a}和B ^ {a}表示。所有这些数量都定义为没有参考系,即绝对数量。当介绍了一些基础时,它们表示为包括两个分量和一个基础的基于坐标的几何量。明确表明,该几何方法与法拉第圆盘等实验相对应,并且相对地移动了惯性参考系,而3D E和B及其ST的通常方法则不是这种情况。

著录项

  • 作者

    Ivezic, Tomislav;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号