首页> 外文OA文献 >A Fast Octree-Based Algorithm for Computing Ropelength
【2h】

A Fast Octree-Based Algorithm for Computing Ropelength

机译:一种基于快速八度的绳长计算算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ropelength of a space curve is usually defined as the quotient of itslength by its thickness: the radius of the largest embedded tube around theknot. This idea was extended to space polygons by Eric Rawdon, who gave adefinition of ropelength in terms of doubly-critical self-distances (localminima of the distance function on pairs of points on the polygon) and afunction of the exterior angles of the polygon. A naive algorithm for finding the doubly-critical self-distances of an n-edgepolygon involves comparing each pair of edges, and so takes O(n^2) time. Inthis paper, we describe an improved algorithm, based on the notion of octrees,which runs in O(n log n) time. The speed of the ropelength computation controlsthe performance of ropelength-minimizing programs such as Rawdon and Piatek'sTOROS. An implementation of our algorithm is freely available under the GNU PublicLicense.
机译:空间曲线的绳长通常定义为其长度乘以其厚度的商:围绕结的最大嵌入式管的半径。这个想法由埃里克·罗登(Eric Rawdon)扩展到了空间多边形,他根据双重临界自距离(多边形上成对的点上距离函数的局部最小值)和多边形的外角函数来确定了绳索长度。寻找n边多边形的双临界自距离的幼稚算法涉及比较每对边,因此花费O(n ^ 2)时间。在本文中,我们描述了一种基于八叉树概念的改进算法,该算法在O(n log n)时间内运行。绳索长度计算的速度控制着绳索长度最小化程序(例如Rawdon和Piatek'sTOROS)的性能。我们的算法的实现可在GNU PublicLicense下免费获得。

著录项

  • 作者

    Ashton, Ted; Cantarella, Jason;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号