首页> 外文OA文献 >Quantum field theory in curved spacetime, the operator product expansion, and dark energy
【2h】

Quantum field theory in curved spacetime, the operator product expansion, and dark energy

机译:量子场理论在弯曲时空中的运算产品  扩张和暗能量

摘要

To make sense of quantum field theory in an arbitrary (globally hyperbolic)curved spacetime, the theory must be formulated in a local and covariant mannerin terms of locally measureable field observables. Since a generic curvedspacetime does not possess symmetries or a unique notion of a vacuum state, thetheory also must be formulated in a manner that does not require symmetries ora preferred notion of a ``vacuum state'' and ``particles''. We propose such aformulation of quantum field theory, wherein the operator product expansion(OPE) of the quantum fields is elevated to a fundamental status, and thequantum field theory is viewed as being defined by its OPE. Since the OPEcoefficients may be better behaved than any quantities having to do withstates, we suggest that it may be possible to perturbatively construct the OPEcoefficients--and, thus, the quantum field theory. By contrast, ground/vacuumstates--in spacetimes, such as Minkowski spacetime, where they may bedefined--cannot vary analytically with the parameters of the theory. We arguethat this implies that composite fields may acquire nonvanishing vacuum stateexpectation values due to nonperturbative effects. We speculate that this couldaccount for the existence of a nonvanishing vacuum expectation value of thestress-energy tensor of a quantum field occurring at a scale much smaller thanthe natural scales of the theory.
机译:为了在任意(全局双曲)弯曲时空中理解量子场论,必须根据可局部测量的场观测值以局部和协变方式来表达该理论。由于一般的弯曲时空不具有对称性或真空状态的唯一概念,因此该理论还必须以不需要对称性或``真空状态''和``粒子''的优选概念的方式来表述。我们提出了这样一种量子场论的公式,其中量子场的算子乘积扩展(OPE)被提升到一个基本状态,并且量子场论被认为是由其OPE定义的。由于OPE系数的表现可能好于与状态相关的任何数量,因此我们建议有可能扰动地构造OPE系数,进而建立量子场论。相比之下,在时空(例如Minkowski时空,可能在其中定义)中的基态/真空状态不会随着理论参数的变化而变化。我们认为这意味着复合场可能会由于非微扰效应而获得不消失的真空状态期望值。我们推测这可以解释量子场的应力-能量张量的不消失的真空期望值的存在,该期望值的大小远小于理论的自然尺度。

著录项

  • 作者

    Hollands S.; Wald R. M.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号