首页> 外文OA文献 >Nonparametric estimation of distribution and density functions in presence of missing data: an IFS approach
【2h】

Nonparametric estimation of distribution and density functions in presence of missing data: an IFS approach

机译:非参数估计的分布和密度函数  存在缺失数据:IFs方法

摘要

In this paper we consider a class of nonparametric estimators of adistribution function F, with compact support, based on the theory of IFSs. Theestimator of F is tought as the fixed point of a contractive operator T definedin terms of a vector of parameters p and a family of affine maps W which can beboth depend of the sample (X_1, X_2, ...., X_n). Given W, the problem consistsin finding a vector p such that the fixed point of T is ``sufficiently near''to F. It turns out that this is a quadratic constrained optimization problemthat we propose to solve by penalization techniques. If F has a density f, wecan also provide an estimator of f based on Fourier techniques. IFS estimatorsfor F are asymptotically equivalent to the empirical distribution function(e.d.f.) estimator. We will study relative efficiency of the IFS estimatorswith respect to the e.d.f. for small samples via Monte Carlo approach. For well behaved distribution functions F and for a particular family ofso-called wavelet maps the IFS estimators can be dramatically better than thee.d.f. (or the kernel estimator for density estimation) in presence of missingdata, i.e. when it is only possibile to observe data on subsets of the wholesupport of F. This research has also produced a free package for the R statisticalenvironment which is ready to be used in applications.
机译:在本文中,我们基于IFS的理论,考虑具有紧支持的一类分布函数F的非参数估计量。 F的估计量是紧缩的算子T的不动点,它根据参数p的向量和可依赖于样本(X_1,X_2,....,X_n)的一组仿射图W定义。给定W,问题在于找到一个向量p,使得T的固定点``足够接近''F.事实证明,这是一个二次约束优化问题,我们建议通过惩罚技术来解决。如果F的密度为f,我们还可以基于傅立叶技术提供f的估计量。 F的IFS估计量渐近等效于经验分布函数(e.d.f.)估计量。我们将研究IFS估算器相对于e.d.f的相对效率。通过蒙特卡洛方法进行小样本分析。对于行为良好的分布函数F和特定的所谓小波图族,IFS估计量可能比thee.d.f好得多。 (或用于密度估计的内核估计器)在缺少数据的情况下,即仅在F的整个支持子集上观察数据时才可使用。这项研究还为R统计环境提供了一个免费软件包,可随时用于应用程序。

著录项

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号