首页> 外文OA文献 >On Stochastic Error and Computational Efficiency of the Markov Chain Monte Carlo Method
【2h】

On Stochastic Error and Computational Efficiency of the Markov Chain Monte Carlo Method

机译:马尔可夫链的随机误差与计算效率   蒙特卡罗方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In Markov Chain Monte Carlo (MCMC) simulations, the thermal equilibriaquantities are estimated by ensemble average over a sample set containing alarge number of correlated samples. These samples are selected in accordancewith the probability distribution function, known from the partition functionof equilibrium state. As the stochastic error of the simulation results issignificant, it is desirable to understand the variance of the estimation byensemble average, which depends on the sample size (i.e., the total number ofsamples in the set) and the sampling interval (i.e., cycle number between twoconsecutive samples). Although large sample sizes reduce the variance, theyincrease the computational cost of the simulation. For a given CPU time, thesample size can be reduced greatly by increasing the sampling interval, whilehaving the corresponding increase in variance be negligible if the originalsampling interval is very small. In this work, we report a few general rulesthat relate the variance with the sample size and the sampling interval. Theseresults are observed and confirmed numerically. These variance rules arederived for the MCMC method but are also valid for the correlated samplesobtained using other Monte Carlo methods. The main contribution of this workincludes the theoretical proof of these numerical observations and the set ofassumptions that lead to them.
机译:在马尔可夫链蒙特卡罗(MCMC)模拟中,热平衡量是通过对包含大量相关样本的样本集的集合平均进行估计的。根据概率分布函数选择这些样本,该概率分布函数从平衡状态的分配函数中得知。由于模拟结果的随机误差很大,因此希望通过整体平均值理解估计的方差,该方差取决于样本大小(即集合中样本的总数)和采样间隔(即两次采样之间的周期数)。两个连续的样本)。尽管大样本量减少了方差,但它们增加了模拟的计算成本。对于给定的CPU时间,可以通过增加采样间隔来大大减小采样大小,而如果原始采样间隔很小,则相应的方差增加可以忽略不计。在这项工作中,我们报告了一些将差异与样本数量和采样间隔相关的一般规则。对这些结果进行了观察和数值证实。这些方差规则适用于MCMC方法,但也适用于使用其他Monte Carlo方法获得的相关样本。这项工作的主要贡献包括这些数值观测的理论证明以及导致它们的一系列假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号