首页> 外文OA文献 >Screening the geomechanical stability (thermal and mechanical) of shared multi-user CO2 storage assets: a simple effective tool applied to the Captain Sandstone Aquifer
【2h】

Screening the geomechanical stability (thermal and mechanical) of shared multi-user CO2 storage assets: a simple effective tool applied to the Captain Sandstone Aquifer

机译:筛选共享多用户二氧化碳储存资产的地质力学稳定性(热力学和机械力):一种应用于砂岩含水层船员的简单有效工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-user storage systems are anticipated in the near future to permanently store CO2 captured at industrial sources to meet emissions reductions targets. Multiple storage permit applications will be required to exploit the immense potential capacity within extensive CO2 storage assets. To retain 99% of the injected CO2 for 1000 years the geomechanical stability of the sealing strata above the pressurised storage reservoir is a key factor which needs to be included in the geo-engineering design of shared storage assets. The potential for interaction of increased pressure at multiple injection sites needs to be predicted and assessed at a regional scale to assure the integrity at all existing sites before a storage permit is granted. Geomechanical models coupled with the expected fluid pressure response predict the stability of the storage asset during and after injection of CO2 at multiple injection sites, and can be used as a tool to ensure efficient utilisation of the storage capacity. The geomechanical analysis of the thermal stress as well as local and regional fluid pressure changes requires a detailed numerical evaluation, often at a resolution significantly higher than the data available. Coupling of regional-scale static geological models, dynamic multi-phase flow models and detailed geomechanical models requires extensive computational resources. Such models often produce seemingly detailed results, but are usually only one or two realisations of a system populated by a statistically generated parameter set. Limits on time and computational resources prevent more simulations within fixed time and financial budgets. To enable a more time and cost efficient methodology of assessing the geomechanical stability of potential storage sites we present a four-tier modelling approach with increasing complexity that allows an in-depth evaluation of the geomechanical stability at a regional scale of a multi-user storage asset taking into account the fluid pressure increase and the thermal stress impact on the stability of the strata sealing the CO2 store. The tiers include: (1) development of a geo-mechanical facies model of the storage system,(2) development of an analytical geomechanical model for the storage site static stress conditions, (3)fitting an empirical multivariable polynomial function to the analytical modal, and (4) conditioning the empirical function using coupled numerical THM modelling for dynamic stress conditions. The result is look up function which gives the maximum possible fluid pressure as a function of location. This approach significantly simplifies the computational requirements and time for the prediction of geomechanical behaviour. In addition to presenting this methodology, using the Captain Sandstone of the North Sea as an example, three key findings are further examined. Firstly, detailed analysis of the stress changes as a result of cold fluid injection suggests that the redistribution of thermal stress can, in some cases, be beneficial to the storage system depending on the stress bridging which occurs. Secondly, pressure plume migration over time in dipping strata, from deeper injection sites to shallower sites, needs to beudtaken into account. Thirdly, the nature of the strata underlying the storage formation is critical to theudpressure increase in response to the fluid injection. The methodology developed in this paper enables audrapid and efficient screening of the dynamic geomechanical stability and facilitates an efficient couplingudto diverse discrete multiphase fluid flow models using commonly available computational resources.
机译:预计在不久的将来,多用户存储系统将永久存储在工业来源处捕获的二氧化碳,以达到减排目标。要利用大量二氧化碳存储资产中的巨大潜在容量,将需要多个存储许可证申请。为了将99%的注入CO2保留1000年,加压存储层上方的密封层的地质力学稳定性是共享存储资产的地球工程设计中需要考虑的一个关键因素。需要在区域范围内预测和评估多个注射部位压力升高相互作用的潜在可能性,以确保在授予储存许可证之前所有现有部位的完整性。地质力学模型与预期的流体压力响应相结合,可以预测在多个注入点注入二氧化碳期间和之后,存储资产的稳定性,并且可以用作确保有效利用存储容量的工具。对热应力以及局部和区域流体压力变化的地质力学分析需要详细的数值评估,通常其分辨率远高于可用数据。区域规模的静态地质模型,动态多相流模型和详细的地质力学模型的耦合需要大量的计算资源。这样的模型通常会产生看似详细的结果,但通常只是由统计生成的参数集组成的系统的一个或两个实现。由于时间和计算资源的限制,无法在固定的时间和财务预算内进行更多的模拟。为了提供一种更具时间和成本效益的方法来评估潜在存储地点的地质力学稳定性,我们提出了一种四层建模方法,其复杂性不断提高,从而可以在多用户存储区域范围内深入评估地质力学稳定性。考虑到流体压力的增加和热应力对密封二氧化碳封存层的稳定性的影响。这些层次包括:(1)开发存储系统的地质力学相模型;(2)开发用于存储地点静态应力条件的分析地质力学模型;(3)将经验多元多项式函数拟合到分析模态(4)使用耦合数值THM模型对动态应力条件进行经验函数调节。结果是查找功能,该功能根据位置给出最大可能的流体压力。这种方法大大简化了预测岩土力学行为的计算要求和时间。除了介绍这种方法外,还以北海的砂岩船长为例,对三个关键发现进行了进一步研究。首先,对由于冷流体注入而引起的应力变化的详细分析表明,在某些情况下,根据发生的应力桥接,热应力的重新分布可能对存储系统有利。其次,需要考虑在浸渍层中压力羽流随时间从较深的注入点向较浅的点的迁移。第三,储层下面的地层的性质对于响应流体注入而增加负压至关重要。本文开发的方法可以对动态地质力学稳定性进行快速,有效的筛选,并可以使用常用的计算资源将其有效地耦合到各种离散的多相流体流动模型。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号