首页> 外文OA文献 >Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration
【2h】

Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration

机译:使用贝叶斯框架和全局敏感性分析来确定两种基于过程的模型的优缺点,这些模型在自养呼吸的表现上有所不同

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Process-based models are powerful tools for sustainable and adaptive forest management. Bayesian statistics and global sensitivity analysis allow to reduce uncertainties in parameters and outputs, and they provide better insight of model behaviour. In this work two versions of a process-based model that differed in the autotrophic respiration modelling were analysed. The original version (3PGN) was based on a constant ratio between net and gross primary production, while in a new version (3PGN*) the autotrophic respiration was modelled as a function of temperature and biomass. A Bayesian framework, and a global sensitivity analysis (Morris method) were used to reduce parametric uncertainty, to highlight strengths and weaknesses of the models and to evaluate their performances. The Bayesian approach allowed also to identify the weaknesses and strengths of the dataset used for the analyses. The Morrisudmethod in combination with the Bayesian framework helped to identify key parameters and gave a deeper understanding of model behaviour. Both model versions reliably predicted average stand diameter at breast height, average stand height, stand volume and stem biomass. On the contrary, theudmodels were not able to accurately predict net ecosystem production. Bayesian model comparison showed that 3PGN*, with the new autotrophic respiration model, has a higher conditional probability of being correct than the original 3PGN model.
机译:基于过程的模型是用于可持续和自适应森林管理的强大工具。贝叶斯统计和全局敏感性分析可以减少参数和输出的不确定性,并且可以更好地了解模型行为。在这项工作中,分析了两个版本的基于过程的模型,它们在自养呼吸模型方面有所不同。原始版本(3PGN)基于净初级生产力与总初级生产之间的恒定比率,而在新版本(3PGN *)中,自养呼吸被建模为温度和生物量的函数。贝叶斯框架和全局敏感性分析(莫里斯方法)用于减少参数不确定性,突出模型的优缺点并评估其性能。贝叶斯方法还可以识别用于分析的数据集的弱点和优势。 Morris udmethod与贝叶斯框架的结合有助于识别关键参数,并加深了对模型行为的理解。两种模型版本均可靠地预测了胸高,平均林分高度,林分体积和茎生物量的平均林分直径。相反, ud模型无法准确预测生态系统净产量。贝叶斯模型比较表明,与新的自养呼吸模型相比,3PGN *具有比原始3PGN模型更正确的条件概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号