首页> 外文OA文献 >Approaches to hazard-oriented groundwater management based on multivariate analysis of groundwater quality
【2h】

Approaches to hazard-oriented groundwater management based on multivariate analysis of groundwater quality

机译:基于地下水水质多元分析的以灾害为导向的地下水管理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drinking water extracted near rivers in alluvial aquifers is subject to potential microbial contamination due to rapidly infiltrating river water during high discharge events. The heterogeneity of river-groundwater interaction and hydrogeological characteristics of the aquifer renders a complex pattern of groundwater quality. The quality of the extracted drinking water can be managed using decision support and HACCP (Hazard Analysis and Critical Control Point) systems, but the detection of potential contamination remains a complex task to master. The methodology proposed herein uses a combination of high-resolution measurements and multivariate statistical analyses to characterise actual groundwater quality and detect potential contamination. The aim of this project was to improve the protection of riverine groundwater extraction wells and to increase the degrees of freedom available to the management of fluvial planes with drinking-water production and aquifer recharge by river-groundwater interaction. udThe monitoring network was set up in the Reinacherheide in North-west Switzerland and encompassed the depth-oriented installation of multiparameter instruments, a surface-water monitoring station and a flow-through cell with an automated sampler and high-precision measurement instruments. The parameters recorded included temperature, electrical conductivity, spectral absorption coefficient, particle density and turbidity. Two of the observation wells were equipped with a telemetry system and the flow cell could be controlled remotely. The well-field encompassed eight groundwater extraction wells.udThe optimal choice of observation wells and indicator parameters was assessed using principal component analysis of groundwater head, temperature and electrical conductivity time-series to detect the influence of, for example, river-water infiltration or river-stage fluctuations on the time-series recorded in the groundwater observation wells. Groundwater head was susceptible to pressure waves induced by both river-stage fluctuations and groundwater extraction. Temperature time-series showed only weak responses to high discharge events. Electrical conductivity, however, showed a distance-driven response pattern to high discharge events. To further assess the representative strength of individual groundwater quality indicator parameters for identifying microbial contamination, a bi-weekly and a high-resolution sampling campaign were carried out. The results showed high faecal-indicator bacteria densities (E. coli and Enterococcus sp.) at the beginning of high discharge events, followed by a rapid decrease, leading to a strong hit-and-miss characteristic in the bi-weekly sampling campaign. The third approach applied used the neural network-based combination of self-organizing maps and Sammon's projection (SOM-SM) to detect shifts in groundwater quality system states. The nonlinear analysis was carried out with groundwater head, temperature and electrical conductivity time-series from six observation wells. The subsequent shading of the projected trajectory of system states with independent time-series (spectral absorption coefficient and particle density) allowed the identification of critical system states, when actual groundwater quality decreased and contamination of the extraction wells was imminent. The time at which the changes in system state occurred and were detected were used as potential warning indicators for the water supplier. The effects of altered groundwater extraction (as a consequence of the SOM-SM warning) were then simulated using a groundwater flow model. The outcome of the SOM-SM analysis is, thus, proposed as an interface between the monitoring system and extraction-well management system.udThe proposed approach incorporates hydrogeological knowledge and the analysis of prevalent conditions concerning river-groundwater interaction with real-time telemetric data transfer, data-base management and nonlinear statistical analysis to detect deterioration in actual groundwater quality due to rapidly infiltrating river water. As the SOM-SM is not based on threshold values and independent of indicator parameters, the approach can be transferred to other sites with similar characteristics.
机译:冲积含水层中河流附近抽取的饮用水由于在高排放事件中迅速渗入河水而可能受到微生物污染。河流-地下水相互作用的非均质性和含水层的水文地质特征使地下水质量呈现出复杂的格局。可以使用决策支持和HACCP(危害分析和关键控制点)系统来管理所提取饮用水的质量,但是潜在污染的检测仍然是一项复杂的任务。本文提出的方法论结合了高分辨率测量和多元统计分析来表征实际地下水质量并检测潜在的污染。该项目的目的是改善对河流地下水开采井的保护,并通过河流与地下水的相互作用增加饮用水生产和含水层补给对河流平面的管理提供的自由度。 ud监测网络在瑞士西北部的Reinacherheide建立,包括深度导向的多参数仪器安装,地表水监测站以及带有自动采样器和高精度测量仪器的流通池。记录的参数包括温度,电导率,光谱吸收系数,颗粒密度和浊度。其中两个观察井配备了遥测系统,并且可以远程控制流通池。该井场包括八口地下水提取井。 ud使用地下水压头,温度和电导率时间序列的主成分分析来检测例如井水渗透的影响,从而评估观察井和指标参数的最佳选择或地下水观测井记录的时间序列上的河段波动。地下水水位易受河段波动和地下水抽取引起的压力波的影响。温度时间序列仅显示出对高放电事件的弱响应。然而,电导率显示出对高放电事件的距离驱动响应模式。为了进一步评估用于识别微生物污染的各个地下水水质指标参数的代表性强度,开展了每两周一次的高分辨率采样活动。结果显示,在高排放事件开始时,粪便指示菌的细菌密度较高(大肠杆菌和肠球菌),随后迅速下降,导致每两周一次的采样活动具有很强的命中率和失误率。应用的第三种方法是使用基于神经网络的自组织图和Sammon投影(SOM-SM)的组合来检测地下水质量系统状态的变化。使用六个观测井的地下水压头,温度和电导率时间序列进行了非线性分析。随后的系统状态的预测轨迹具有独立的时间序列(光谱吸收系数和颗粒密度)的阴影可以识别关键的系统状态,这是因为实际地下水质量下降并且即将受到抽水井的污染。系统状态发生变化并被检测到的时间被用作供水设备的潜在警告指标。然后使用地下水流模型模拟地下水开采量变化的影响(由于SOM-SM警告)。因此,建议将SOM-SM分析的结果作为监测系统与抽油井管理系统之间的接口。 ud建议的方法结合了水文地质知识,并通过实时遥测技术分析了有关河水与地下水相互作用的普遍条件数据传输,数据库管理和非线性统计分析,以检测由于快速渗入河水而导致的实际地下水质量下降。由于SOM-SM并非基于阈值,并且与指标参数无关,因此该方法可以转移到具有类似特征的其他站点。

著录项

  • 作者

    Page Rebecca Mary;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号