首页> 外文OA文献 >A machine learning approach to statistical shape models with applications to medical image analysis
【2h】

A machine learning approach to statistical shape models with applications to medical image analysis

机译:统计形状模型的机器学习方法,应用于医学图像分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical shape models have become an indispensable tool for image analysis. The use of shape models is especially popular in computer vision and medical image analysis, where they were incorporated as a prior into a wide range of different algorithms. In spite of their big success, the study of statistical shape models has not received much attention in recent years. Shape models are often seen as an isolated technique, which merely consists of applying Principal Component Analysis to a set of example data sets. ududIn this thesis we revisit statistical shape models and discuss their construction and applications from the perspective of machine learning and kernel methods. The shapes that belong to an object class are modeled as a Gaussian Process whose parameters are estimated from example data. This formulation puts statistical shape models in a much wider context and makes the powerful inference tools from learning theory applicable to shape modeling. Furthermore, the formulation is continuous and thus helps to avoid discretization issues, which often arise with discrete models.ududAn important step in building statistical shape models is to establish surface correspondence. We discuss an approach which is based on kernel methods. This formulation allows us to integrate the statistical shape model as an additional prior. It thus unifies the methods of registration and shape model fitting. Using Gaussian Process regression we can integrate shape constraints in our model. These constraints can be used to enforce landmark matching in the fitting or correspondence problem. The same technique also leads directly to a new solution for shape reconstruction from partial data. ududIn addition to experiments on synthetic 2D data sets, we show the applicability of our methods on real 3D medical data of the human head. In particular, we build a 3D model of the human skull, and present its applications for the planning of cranio-facial surgeries.ud
机译:统计形状模型已成为图像分析必不可少的工具。形状模型的使用在计算机视觉和医学图像分析中特别受欢迎,将它们作为先验方法整合到各种不同的算法中。尽管统计形状模型取得了巨大的成功,但近年来却没有受到太多关注。形状模型通常被视为一种隔离的技术,仅包括将主成分分析应用于一组示例数据集。 ud ud在本文中,我们将重新研究统计形状模型,并从机器学习和核方法的角度讨论它们的构造和应用。属于对象类的形状被建模为高斯过程,其参数是从示例数据中估计的。这种表述将统计形状模型置于更广泛的范围内,并使来自学习理论的强大推断工具适用于形状建模。此外,该公式是连续的,因此有助于避免离散模型中经常出现的离散化问题。 ud ud建立统计形状模型的重要步骤是建立曲面对应。我们讨论一种基于内核方法的方法。此公式使我们能够将统计形状模型集成为其他先验。因此,它统一了套准和形状模型拟合的方法。使用高斯过程回归,我们可以将形状约束集成到模型中。这些约束可用于在拟合或对应问题中强制实施地标匹配。相同的技术还直接导致从局部数据进行形状重构的新解决方案。 ud ud除了在合成2D数据集上进行的实验之外,我们还展示了我们的方法在人头的真实3D医学数据上的适用性。特别是,我们建立了人类头骨的3D模型,并提出了其在颅面外科手术计划中的应用。 ud

著录项

  • 作者

    Lüthi Marcel;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号