首页> 外文OA文献 >Spin systems and long-range interactions for quantum memories and quantum computing
【2h】

Spin systems and long-range interactions for quantum memories and quantum computing

机译:用于量子存储器和量子计算的自旋系统和远程相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since the seminal work by Shor who proposed a quantum algorithm factorizing integers into prime factors, it has become manifest that the laws of quantum mechanics provide resources for computation that overpower classical physics. The computational advantages that quantum physics offers have stimulated a tremendous amount of theoretical and experimental research. In this context, spin systems have played a major role, given that the spin degree of freedom -- with the paradigmatic case of the spin-1/2 of electrons -- represents an obvious candidate for the encoding of an elementary bit of quantum information (qubit). ududOn the other hand, however, quantum objects are very fragile entities, being very susceptible to the environment they reside in. This fragility of qubits is one of the main obstacles in the realization of a quantum computer. ududIn this thesis, we mainly address the two following questions relevant to quantum computation. ududi) How is it possible to realize quantum gates both in a reliable and scalable way? ududii) How can we store quantum information in a way that is resilient to the errors caused by the thermal environment? ududWe focus on spin systems and demonstrate that long-range spin-spin interactions in the models considered can have beneficial effects.ududIn their pioneering work, Loss and DiVincenzo proposed a way to perform quantum computation in a semiconductor-based architecture where the spin state of an electron trapped in a quantum dot is chosen to encode the elementary qubit. In this proposal, the spins are required to lie spatially close to each other, and this might complicate the realization of a scalable architecture. ududIn the first part of the thesis we thus propose a scheme that allows the constraint on the positioning of the qubits to be relaxed. This is achieved by introducing a ferromagnetic coupler between the distant qubits, to which it is coupled via a dipolar interaction. Most importantly, our proposal is applicable to any type of spin qubits and in particular to the technologically very relevant silicon-based qubits and NV-centers in diamond to which previous coupling schemes do not apply.ududAs additional key element, a quantum computer needs a memory capable of reliably storing quantum information in the presence of thermal fluctuations.ududThis brings us to the second part of this thesis, where we consider self-correcting memories, for which the protection against thermal noise is built-in at the hardware level. We propose physical models that exhibit these self-correcting properties, using as a starting point the well known topologically ordered toric code. In particular, we investigate how to induce long-range interactions between the spins of the toric code, since such interactions help increase the memory lifetime. ududAs a first step, we study a honeycomb quantum spin model coupled to delocalized cavity modes. We investigate the properties of the low-energy toric code Hamiltonian and show that the coupling to cavity modes prolongs the lifetime of the memory and offers a method to detect the presence of excitations.udWhile the introduction of extended bosonic modes makes the model non-local, we also propose a purely local model consisting of a toric code embedded in a three-dimensional cubic lattice of hopping bosons; the low-energy sector of a toric code coupled to a three-dimensional Heisenberg ferromagnet in a broken-symmetry state realizes this model. Our analysis leads to an energy penalty for the creation of defects that grows linearly with the size L of the memory and thus to a lifetime increasing exponentially with L. ud udIn the third part of this thesis, we study spin systems that support anyons, i.e., particles with fractional statistics. Similar to the toric code, such systems are topologically ordered: they are immune to local perturbations and quantum gates are implemented by non-local operations, namely the exchange of anyons, whose outcomes depend only on the topology of the exchange. Here again the fault-tolerance is achieved at the level of the hardware and physical systems supporting non-abelian anyons are thus promising platforms for quantum computation. ududWe focus on spin systems that exhibit some of these properties and specifically on variations of the honeycomb quantum spin model. We first investigate the exact solution of the honeycomb model in detail and derive an explicit formula for the projector onto the physical subspace. We use this result to study inhomogeneous open spin ladders, related to the honeycomb model, which can be tuned between topological and non-topological phases. We test the robustness of Majorana end states (MES) which emerge at the boundary between sections in different topological phases. Furthermore, we present a trijunction setup where MES can be braided. This is of interest since MES in these spin ladders potentially follow non-abelian braiding statistics. Finally, we study the ground states of the aforementioned ladders and show that they are free of vortices when the signs of the spin couplings are all positive or negative. To prove this, we use exact reflection-positivity-based methods as well as approximate methods. ududIn the last part of the thesis, we provide an extension of the Mermin-Wagner theorem to a system of lattice spins that are spin-coupled to itinerant and interacting charge carriers. We prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature (in the absence of spin-orbit). The fundamental question whether spontaneous ordering of the lattice spins occurs in these systems is of interest in the context of quantum computation; the polarization of nuclear spins coupled to a two-dimensional electron gas is a possible route towards the reduction of decoherence induced by the fluctuating Overhauser field in gate-defined quantum dots. udud
机译:自从Shor提出了将整数分解为主要因子的量子算法以来,他的开创性工作就证明了量子力学定律为计算提供了超越经典物理学的资源。量子物理学提供的计算优势激发了大量的理论和实验研究。在这种情况下,自旋系统发挥了重要作用,因为自旋自由度-以电子自旋1/2的典型情况-显然是量子信息基本位编码的候选者(量子位)。但是,另一方面,量子对象是非常脆弱的实体,非常容易受到其所处环境的影响。量子位的这种脆弱性是实现量子计算机的主要障碍之一。 ud ud在本文中,我们主要解决与量子计算有关的以下两个问题。 ud udi)如何以可靠且可扩展的方式实现量子门? ud udii)我们如何以对由热环境引起的误差具有弹性的方式存储量子信息? ud ud我们专注于自旋系统,并证明了所考虑的模型中的长距离自旋-自旋相互作用可以产生有益的影响。 ud ud在Loss和DiVincenzo的开创性工作中,他提出了一种在基于半导体的半导体中执行量子计算的方法该体系结构选择了量子点中捕获的电子的自旋态来编码基本量子位。在该建议中,自旋需要在空间上彼此靠近,这可能会使可伸缩体系结构的实现复杂化。因此,在本文的第一部分中,我们提出了一种方案,该方案允许放宽对量子位的定位的约束。这是通过在远距离量子位之间引入铁磁耦合器来实现的,该耦合器通过偶极相互作用耦合到该耦合器。最重要的是,我们的建议适用于任何类型的自旋量子位,尤其适用于技术上非常相关的金刚石基硅量子位和钻石的NV中心,而先前的耦合方案则不适用。 ud ud作为附加的关键元素,量子计算机需要一种能够在存在热波动的情况下可靠地存储量子信息的存储器。 ud ud这使我们进入了本文的第二部分,在此我们考虑了自校正存储器,该存储器内置了防止热噪声的保护功能在硬件级别。我们提出了以这些自校正特性为特征的物理模型,并以众所周知的拓扑排序复曲面代码为起点。特别是,我们研究了如何在复曲面代码的自旋之间引发远程交互,因为这种交互有助于延长内存寿命。作为第一步,我们研究耦合到离域腔模的蜂窝量子自旋模型。我们研究了低能复曲面代码哈密顿量的性质,并表明与腔模的耦合延长了记忆的寿命,并提供了一种检测激励存在的方法。局部,我们还提出了一个纯局部模型,该模型由嵌入在跳跃玻色子的三维立方晶格中的复曲面代码组成;通过以断对称状态耦合到三维Heisenberg铁磁体的复曲面代码的低能扇区实现了该模型。我们的分析导致缺陷产生的能量损失,该缺陷随存储器的大小L线性增长,因此寿命随着L呈指数增长。 ud ud在本文的第三部分中,我们研究了支持任意子的自旋系统。 ,即具有分数统计的粒子。类似于复曲面代码,此类系统在拓扑上是有序的:它们不受局部扰动的影响,并且量子门由非局部操作实现,即,任意子的交换,其结果仅取决于交换的拓扑。在这里,再次在硬件和硬件系统级别实现了容错,因此支持非阿贝尔正离子的物理系统是有前途的量子计算平台。 ud ud我们专注于具有某些特性的自旋系统,尤其是蜂窝量子自旋模型的变体。我们首先详细研究蜂窝模型的精确解,然后将投影仪的显式推导到物理子空间上。我们使用此结果来研究与蜂窝模型相关的非均匀开放自旋阶梯,可以在拓扑和非拓扑阶段之间进行调整。我们测试了Majorana最终状态(MES)的鲁棒性,该状态出现在不同拓扑阶段的部分之间的边界处。此外,我们提出了可以编织MES的三结点设置。这很有趣,因为这些自旋阶梯中的MES可能遵循非阿贝尔编织统计。最后,我们研究了上述梯子的基态,并表明当自旋耦合的符号均为正或负时,它们没有涡旋。为了证明这一点,我们使用基于精确反射正性的方法以及近似方法。 ud ud在本文的最后一部分,我们将Mermin-Wagner定理扩展到晶格自旋系统,该系统自旋耦合到流动剂和相互作用的电荷载流子。我们证明,在任何有限温度下(在没有自旋轨道的情况下),一维和二维中的(反)铁磁或螺旋长程序列都是不可能的。这些系统中是否发生晶格自旋的自发排序这一基本问题在量子计算的背景下引起了人们的兴趣。耦合到二维电子气的核自旋的极化是减少门定义量子点中的Overhauser场波动引起的退相干的可能途径。 ud ud

著录项

  • 作者

    Pedrocchi Fabio Luigi;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号