首页> 外文OA文献 >On the link between the structure of A-branes observed in the homological mirror symmetry and the classical theory of automorphic forms: mathematical connections with the modular elliptic curves, p-adic and adelic numbers and p-adic and adelic strings
【2h】

On the link between the structure of A-branes observed in the homological mirror symmetry and the classical theory of automorphic forms: mathematical connections with the modular elliptic curves, p-adic and adelic numbers and p-adic and adelic strings

机译:关于在同源镜像对称中观察到的a-branes结构与自守形式的经典理论之间的联系:与模块化椭圆曲线,p-adic和adelic数以及p-adic和adelic字符串的数学连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is a review of some interesting results that has been obtained in the study of the categories of A-branes on the dual Hitchin fibers and some interesting phenomena associated with the endoscopy in the geometric Langlands correspondence of various authoritative theoretical physicists and mathematicians. The geometric Langlands correspondence has been interpreted as the mirror symmetry of the Hitchin fibrations for two dual reductive groups. This mirror symmetry reduces to T-duality on the generic Hitchin fibers. Also from this work we’ve showed that can be obtained interesting and new mathematical connections with some sectors of Number Theory and String Theory, principally with the modular elliptic curves, p-adic and adelic numbers and p-adic and adelic strings. In the Section 1, we have described some equations regarding the Galois group and Abelian class field theory, automorphic representations of GL2(AQ) and modular forms, adèles and vector bundles. In the Section 2, we have showed some equations regarding the moduli spaces of SL2 and SO3 Higgs bundles on an elliptic curve with tame ramification at one point. In the Section 3, we have showed some equations regarding the action of the Wilson and ‘t Hooft/Hecke operators on the electric and magnetic branes relevant to geometric endoscopy. In the Section 4, we have described the Hecke eigensheaves and the notion of fractional Hecke eigensheaves. In the Section 5, we have described some equations concerning the local and global Langlands correspondence. In the Section 6, we have described some equations regarding the automorphic functions associated to the fractional Hecke eigensheaves. In the Section 7, we have showed some equations concerning the modular elliptic curves belonging at the proof of Fermat’s Last Theorem. In the Section 8, we have showed some equations concerning the p-adic and adelic numbers and the p-adic and adelic strings. In the Section 9, we have described the P-N Model (Palumbo-Nardelli model) and the Ramanujan identities, solution applied to ten dimensional IIB supergravity (uplifted 10-dimensional solution) and connections with some equations concerning the Riemann zeta function. In conclusion, in the Section 10, we have described the possible mathematical connections obtained between some equations regarding the various sections.
机译:本文回顾了一些有趣的结果,这些结果是在研究双希钦纤维上的A族类别以及与各种权威理论物理学家和数学家的几何Langlands对应关系中的内窥镜检查相关的有趣现象的综述。 Langlands的几何对应关系已被解释为两个双重还原基团的Hitchin纤维的镜像对称性。这种镜面对称性降低了通用Hitchin光纤的T对偶性。同样,通过这项工作,我们证明了可以与数论和弦论的某些领域(主要是模块化的椭圆曲线,p-adic和adelic数以及p-adic和adelic弦)建立有趣且新颖的数学联系。在第1节中,我们描述了有关Galois群和Abelian类场论,GL2(AQ)的自守形式和模块化形式,adèles和向量束的一些方程式。在第2节中,我们展示了关于椭圆曲线上SL2和SO3希格斯束的模空间的一些方程,其中温驯化在一点上。在第3节中,我们展示了有关Wilson和't Hooft / Hecke算符对与几何内窥镜检查有关的电磁膜的作用的一些方程式。在第4节中,我们描述了Hecke本征线和分数Hecke本征线的概念。在第5节中,我们描述了一些有关局部和全局Langlands对应关系的方程。在第6节中,我们描述了一些与分数Hecke本征绳相关的自构函数的方程。在第7节中,我们展示了一些与模椭圆曲线有关的方程,属于费马最后定理的证明。在第8节中,我们展示了一些有关p-adic和adelic数以及p-adic和adelic弦的方程。在第9节中,我们描述了P-N模型(Palumbo-Nardelli模型)和Ramanujan恒等式,应用于十维IIB超重力的解决方案(提升的十维解决方案)以及与有关黎曼zeta函数的某些方程式的联系。总之,在第10节中,我们描述了有关各个部分的某些方程之间可能获得的数学联系。

著录项

  • 作者

    Nardelli Michele;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号