首页> 外文OA文献 >A structured approach to web panel surveys: the use of a sequential framework for non-random survey sampling inference
【2h】

A structured approach to web panel surveys: the use of a sequential framework for non-random survey sampling inference

机译:网络小组调查的结构化方法:使用顺序框架进行非随机调查抽样推理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Web access panels are self selected panels constructed with the aim of drawing inference for general populations, including large segments of the population who rarely or never access the Internet. A common approach for modeling survey data collected over access panels is combing it with data collected by a randomlyudselected reference survey sample from the target population of Interest. The act of joining the panel is then treated as a random process where each memberudof the population has a positive probability of participating in the survey. The combined reference and panel survey sample can then be used for different estimation approaches which model either the selection process or the measurement of interest, or some case the two together. Most practitioners and academics whoudhave considered this combined sample approach, model the selection process by a single phase process from the target population directly to the observed sampleudset.udIn the following work, I assume selection into the panel is a sequential rather than a single phase process and offer several estimators that are underlined byudappropriate sequential models. After a careful investigation of a variety of single phase methods applied in practice, I demonstrate the benefits a sequential framework has to the panel problem. One notable strength of this approach is that byudassuming a sequential framework the modeler can include important variables associated with Internet and Web usage. Under a single phase model inclusionudof such information would invalidate basic assumptions such as independence between selection and model covariates.udIn this work I also suggest a carefully structured panel estimation strategy, combining a sample selection design with chosen estimator. Under the sequentialudframework I demonstrate the potential of combining a within-panel random sampling procedure, that is balanced on a sequence of target statistics, with estimators that are modeled over both the selection process and the variable of interest. I show that this strategy has several robustness properties over and beyond currently applied estimators. I conclude by describing an estimation algorithm which applies this estimation strategy to the combined panel and reference survey sample case.
机译:Web访问面板是自行选择的面板,旨在为一般人群(包括很少或从未访问过互联网的大部分人群)做出推断。对通过访问面板收集的调查数据进行建模的一种常用方法是将其与从目标目标人群中随机未选择的参考调查样本收集的数据进行组合。然后,加入专家组的行为被视为一个随机过程,其中人口的每个成员都有参与调查的正概率。然后可以将组合的参考样本和小组调查样本用于不同的估算方法,这些方法可以对选择过程或感兴趣的测量进行建模,或者在某些情况下将两者结合起来。大多数曾经考虑过这种组合样本方法的从业者和学者,都通过单阶段过程对选择过程进行建模,从目标人群直接到观察到的样本 udset。 ud在以下工作中,我认为进入面板的选择是一个顺序而不是而不是单阶段过程,并提供了 udappropriate顺序模型强调的几个估计量。在仔细研究了实践中使用的各种单相方法之后,我展示了顺序框架对面板问题的好处。这种方法的一个显着优势是,通过假定顺序框架,建模器可以包括与Internet和Web使用相关的重要变量。在单阶段模型中, udof这样的信息将使诸如选择和模型协变量之间的独立性之类的基本假设无效。 ud在这项工作中,我还建议了一种精心构造的面板估计策略,将样本选择设计与所选估计量结合起来。在顺序超框架下,我演示了将组合在目标统计序列上平衡的面板内随机抽样程序与在选择过程和目标变量上建模的估计器相结合的潜力。我证明了该策略具有超越当前应用的估计器的几种鲁棒性。最后,我将介绍一种估算算法,该算法将这种估算策略应用于合并的面板和参考调查样本案例。

著录项

  • 作者

    Dayan Yehuda;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号