首页> 外文OA文献 >Quantification of greenhouse gas fluxes from soil in agricultural fields
【2h】

Quantification of greenhouse gas fluxes from soil in agricultural fields

机译:农田土壤温室气体通量的量化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Field studies were conducted at Lincoln University of Missouri (USA) and Hokkaido University (Japan) to: (i) study the relationships between greenhouse gases emissions and soil properties, (ii) assess the influence of agricultural practices on greenhouse gas fluxes and soil properties and (iii) improve the quantification of greenhouse gases from soil in agricultural fields using geospatial technologies. Results showed that besides soil temperature (T), soil thermal properties such as thermal conductivity (K), resistivity (R) and diffusivity (D) and soil pore spaces indices such as the pore tortuosity factor and the relative gas diffusion coefficient (Ds/Do) are controlling factors for greenhouse gases emissions. Soil thermal properties correlated with greenhouse gases emissions when soil temperature could not. The study has found that predicted Ds/Do and correlate with greenhouse gas fluxes even when the air-filled porosity and the total porosity from which they are predicted did not. We have also showed that Ds/Do and can be predicted quickly from routine measurements of soil water and air and existing diffusivity models found in the literature. Agricultural practices do seriously impact greenhouse gases emissions as showed by the effect of mechanized tillage operations on soil physical properties and greenhouse gas fluxes in a corn and soybean fields. In fact, our results showed that tractor compaction increased soil resistance to penetration, water, bulk density and pore tortuosity while reducing air-filled porosity, total pore space and the soil gas diffusion coefficient. Changes in soil properties resulted in increased CO2, NO and N2O emissions. Finally, our results also confirmed that greenhouse gas fluxes vary tremendously in space and time. As estimates of greenhouse gas emissions are influenced by the data processing approach, differences between the different calculation approaches leads to uncertainty. Thus, techniques for developing better estimates are needed. We have showed that Geographic Information Systems (GIS), Global Positioning System (GPS), computer mapping and geo-statistics are technologies that can be used to better understand systems containing large amounts of spatial and temporal variability. Our GIS-based approach for quantifying CO2, CH4 and N2O fluxes from soil in agricultural fields showed that estimating (extrapolating) total greenhouse gas fluxes using the “standard” approach – multiplying the average flux value by the total field area – results in biased predictions of field total greenhouse gases emissions. In contrast, the GIS-based approach we developed produces an interpolated map portraying the spatial distribution of gas fluxes across the field from point measurements and later process the interpolated map produced to determine flux zones. Furthermore, processing, classification and modeling enables the computation of field total fluxes as the sum of fluxes in different zones, therefore taking into account the spatial variability of greenhouse gas fluxes.
机译:在美国密苏里州的林肯大学和日本的北海道大学进行了实地研究,以:(i)研究温室气体排放与土壤特性之间的关系,(ii)评估农业实践对温室气体通量和土壤特性的影响(iii)使用地理空间技术改进农业土壤中温室气体的量化。结果表明,除土壤温度(T)外,还包括土壤热特性(如导热系数(K),电阻率(R)和扩散系数(D))以及土壤孔隙度指数(如孔隙曲折系数和相对气体扩散系数(Ds /是)是温室气体排放的控制因素。当土壤温度达不到要求时,土壤热特性与温室气体排放相关。研究发现,即使充气孔隙率和预测孔隙率的总孔隙率没有变化,预测的Ds / Do也与温室气体通量相关。我们还表明,Ds / Do和Ds / Do可以通过对土壤水和空气的常规测量以及文献中现有的扩散模型来快速预测。机械化耕作操作对玉米和大豆田中土壤物理特性和温室气体通量的影响表明,农业实践确实严重影响了温室气体的排放。实际上,我们的结果表明,拖拉机压实提高了土壤的抗渗透性,水分,容重和孔隙曲度,同时降低了充气孔隙率,总孔隙空间和土壤气体扩散系数。土壤性质的变化导致二氧化碳,一氧化氮和一氧化二氮的排放增加。最后,我们的结果还证实了温室气体通量的时空变化很大。由于温室气体排放量的估算受数据处理方法的影响,因此不同计算方法之间的差异会导致不确定性。因此,需要用于开发更好的估计的技术。我们已经证明,地理信息系统(GIS),全球定位系统(GPS),计算机制图和地理统计是可以用来更好地理解包含大量空间和时间可变性的系统的技术。我们基于GIS的用于量化农田土壤中CO2,CH4和N2O通量的方法表明,使用“标准”方法估算(外推)总温室气体通量-将平均通量值乘以总田间面积-会导致偏差预测温室气体总排放量相比之下,我们开发的基于GIS的方法会生成一张插值图,该图描绘了从点测量得出的整个田间气体通量的空间分布,并随后处理生成的插值图以确定通量区域。此外,通过处理,分类和建模,可以将田间总通量计算为不同区域的通量之和,因此要考虑温室气体通量的空间变异性。

著录项

  • 作者

    Nkongolo Nsalambi Vakanda;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号