首页> 外文OA文献 >Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering
【2h】

Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering

机译:岩土工程中热 - 水耦合问题的数值分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 Elsevier Ltd.Ground source energy systems, such as open-loop systems, have been widely employed in recent years due to their economic and environmental benefits compared to conventional heating and cooling systems. Numerical modelling of such geothermal system requires solving a coupled thermo-hydraulic problem characterised by a convection-dominated heat transfer which can be challenging for the Galerkin finite element method (GFEM). This paper first presents the coupled thermo-hydraulic governing formulation as well as the coupled thermo-hydraulic boundary condition, which can be implemented into a finite element software. Subsequently, the stability condition of the adopted time marching scheme for coupled thermo-hydraulic analysis is established analytically. The behaviour of highly convective problems is then investigated via a series of analyses where convective heat transfer along a soil bar is simulated, with recommendations on the choice of an adequate discretisation with different boundary conditions being provided to avoid oscillatory solutions. Finally, the conclusions from the analytical and numerical studies are applied to the simulation of a boundary value problem involving an open-loop system, with the results showing good agreement with an approximate solution. The main objective of this paper is to demonstrate that the GFEM is capable of dealing with highly convective geotechnical problems.
机译:©2016 Elsevier Ltd.地源能源系统,例如开环系统,由于与传统的加热和冷却系统相比具有经济和环境效益,因此近年来已被广泛采用。这种地热系统的数值建模需要解决一个以对流为主的传热为特征的热工耦合问题,这对于Galerkin有限元方法(GFEM)可能是一个挑战。本文首先介绍了热液耦合控制公式以及热液边界条件,可以将其实现为有限元软件。随后,通过分析确定了采用的时间行进方案进行热工水力耦合分析的稳定性条件。然后,通过一系列分析对高对流问题的行为进行了研究,在这些分析中,模拟了沿土壤棒的对流传热,并提出了在不同边界条件下选择适当离散的建议,以避免振荡解决方案。最后,将分析和数值研究得出的结论应用于涉及开环系统的边值问题的模拟,结果表明与近似解具有良好的一致性。本文的主要目的是证明GFEM能够处理高度对流的岩土问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号