首页> 外文OA文献 >Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine
【2h】

Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine

机译:两相单往复活塞式热转换发动机的工作液选择和性能研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We employ a validated first-order lumped dynamic model of the Up-THERM converter, a two-phase unsteady heat-engine that belongs to a class of innovative devices known as thermofluidic oscillators, which contain fewer moving parts than conventional engines and represent an attractive alternative for remote or off-grid power generation as well as waste-heat recovery. We investigate the performance the Up-THERM with respect to working-fluid selection for its prospective applications. An examination of relevant working-fluid thermodynamic properties reveals that the saturation pressure and vapour-phase density of the fluid play important roles in determining the performance of the Up-THERM – the device delivers a higher power output at high saturation pressures and has higher exergy efficiencies at low vapour-phase densities. Furthermore, working fluids with low critical temperatures, high critical pressures and exhibiting high values of reduced pressures and temperatures result in designs with high power outputs. For a nominal Up-THERM design corresponding to a target application with a heat-source temperature of 360 ◦C, water is compared with forty-five other pure working fluids. When maximizing the power output, R113 is identified as the optimal fluid, followed by i-hexane. Fluids such as siloxanes and heavier hydrocarbons are found to maximize the exergy and thermal efficiencies. The ability of the Up-THERM to convert heat over a range of heat-source temperatures is also investigated, and it is found that the device can deliver in excess of 10 kW when utilizing thermal energy at temperatures above 200 ◦C. Of all the working fluids considered here, ammonia, R245ca, R32, propene and butane feature prominently as optimal and versatile fluids delivering high power over a wide range of heat-source temperatures.
机译:我们采用了经过验证的Up-THERM转换器的一阶集总动态模型,该模型是一种两相非稳态热机,属于一类称为热流体振荡器的创新设备,与传统发动机相比,其运动部件更少,并且具有很强的吸引力。远程或离网发电以及废热回收的替代方案。我们针对其预期应用中的工作流体选择研究了Up-THERM的性能。对相关工作流体热力学性质的检查表明,流体的饱和压力和蒸气相密度在确定Up-THERM的性能方面起着重要作用-该设备在高饱和压力下提供更高的功率输出,并且具有更高的火用力低蒸气相密度时的效率。此外,具有低临界温度,高临界压力并显示出较高的降低的压力和温度值的工作流体导致设计具有高功率输出。对于标称Up-THERM设计,其与热源温度为360℃的目标应用相对应,将水与45种其他纯工作流体进行了比较。当最大功率输出时,R113被确定为最佳流体,其次是异己烷。发现诸如硅氧烷和重质烃之类的流体可最大程度地提高火用效率和热效率。还研究了Up-THERM在一定热源温度范围内转换热量的能力,并且发现当在200℃以上的温度下利用热能时,该设备可以提供超过10 kW的功率。在这里考虑的所有工作流体中,氨,R245ca,R32,丙烯和丁烷的主要特点是在各种热源温度范围内提供高功率的最佳通用流体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号