首页> 外文OA文献 >Toughened carbon fibre reinforced polymer composites with nanoparticle modified epoxy matrices
【2h】

Toughened carbon fibre reinforced polymer composites with nanoparticle modified epoxy matrices

机译:增韧碳纤维增强聚合物复合材料与纳米粒子改性环氧基体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the current work the microstructure and fracture performance of carbon-fibre reinforced polymer (CFRP) composites based upon matrices of an anhydride-cured epoxy-resin (formulated with a reactive diluent), and containing silica nanoparticles and/or polysiloxane core-shell rubber (CSR) nanoparticles, were investigated. Double cantilever beam tests were performed in order to determine the interlaminar fracture energy of the CFRP composites, while the single edge-notched bend (SENB) specimen was employed to evaluate the fracture energy of the bulk polymers. The fracture energy of the bulk epoxy polymers increased from 173 J/m2 for the unmodified polymer to a maximum of 1,237 J/m2 with the addition of 16 wt% of CSR nanoparticles. The toughening mechanisms were identified as (a) localised plastic shear yielding and (b) cavitation of the CSR particles followed by plastic void growth of the matrix. The steadystate propagation value of the interlaminar fracture energy of the CFRP composites increased with increasing nanoparticle concentration, from 1,246 J/m2 for the unmodified epoxy matrix to a maximum of 1,851 J/m2 with 4 wt% of silica nanoparticles and 8 wt% of CSR nanoparticles. Crack growth in the CFRP composites was dominated by fibre-bridging toughening mechanisms. The efficiency of the transfer of toughness from the bulk polymers to the carbon fibre composites was considered. The measured fracture energy of both bulk and composite materials decreased at a test temperature of -80°C, compared with room temperature, i.e. 20°C. Nevertheless, the toughening effects of both the silica and CSR nanoparticles on the bulk epoxy polymers and the CFRP composites, compared with the unmodified epoxy polymers, were still evident even at the lower temperature. Indeed, the toughening effect of the silica nanoparticles was greater at -80°C than at room temperature.
机译:在当前的工作中,基于酸酐固化的环氧树脂(用反应性稀释剂配制)的基质,并包含二氧化硅纳米颗粒和/或聚硅氧烷核壳橡胶的碳纤维增强聚合物(CFRP)复合材料的微观结构和断裂性能(CSR)纳米粒子,进行了研究。为了确定CFRP复合材料的层间断裂能,进行了双悬臂梁测试,同时使用单边缘缺口弯头(SENB)标本评估了本体聚合物的断裂能。通过添加16 wt%的CSR纳米颗粒,本体环氧聚合物的断裂能从未改性聚合物的173 J / m2增加到最大1,237 J / m2。增韧机理被确定为(a)局部塑性剪切屈服和(b)CSR颗粒的空化,然后是基质的塑性空洞生长。 CFRP复合材料的层间断裂能的稳态传播值随纳米颗粒浓度的增加而增加,从未经修饰的环氧基质的1,246 J / m2到最大为1,851 J / m2(含4 wt%的二氧化硅纳米颗粒和8 wt%的CSR)纳米粒子。 CFRP复合材料的裂纹增长主要由纤维桥联增韧机制决定。考虑了将韧性从本体聚合物转移至碳纤维复合材料的效率。与室温(即20°C)相比,在测试温度为-80°C时,散装材料和复合材料的断裂能均降低。尽管如此,与未改性的环氧聚合物相比,二氧化硅和CSR纳米颗粒对本体环氧聚合物和CFRP复合材料的增韧效果仍然很明显,即使在较低温度下也是如此。实际上,二氧化硅纳米颗粒的增韧作用在-80℃下比在室温下更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号