首页> 外文OA文献 >Functionalised Polymer Fibres for Orthopaedic Interfacial Tissue Engineering and Other Biomedical Applications
【2h】

Functionalised Polymer Fibres for Orthopaedic Interfacial Tissue Engineering and Other Biomedical Applications

机译:用于整形外科组织工程和其他生物医学应用的功能化聚合物纤维

摘要

Tissue engineering is a promising approach for the regeneration of a variety of human tissues, where traditional surgical repairs produce inadequate results or appropriate transplant material is in scarce supply. In orthopaedic tissue engineering, the regeneration of the bone/soft tissue interface is of special interest. However, this requires the creation of biomaterial scaffolds with controlled gradients of biochemical cues, in addition to mimicking the microstructure of the natural tissue. For this purpose, a scheme for the covalent immobilisation of biomolecule gradients on aligned synthetic nanofibre scaffolds created via electrospinning was devised. Surface-initiated atom transfer radical polymerisation allows for the controlled growth of a polymer brush containing reactive functional groups on the scaffold surface, specifically poly (glycidyl methacrylate) (PGMA), which contains epoxy groups that can conjugate to biomolecules via nucleophiles such as amines or thiols.udA PGMA-based biomolecule attachment scheme in a 2D model system was optimised. Creating a brush with a larger inter-chain spacing (by the replacement of a fraction of the ATRP initiator with an inactive molecule), as well as improving its water-swellability by incorporation of a water-soluble monomer (hydroxyethyl methacrylate, HEMA), were shown to increase the amount of peptide that could be bound to the polymer surface. Initial results indicate that this system can be used to create covalently immobilised gradients of biomolecules on aligned electrospun scaffolds.udThe versatility of the ATRP-based functionalistion approach was further demonstrated by creation of brushes of Poly (2-Methacryloyloxyethyl phosphorylcholine) (PMPC) on electrospun polymer fibres. Due to PMPC’s excellent haemocompatibility, these materials show great promise in vascular tissue engineering.
机译:组织工程学是用于再生各种人体组织的一种有前途的方法,其中传统的外科手术修复无法产生足够的结果,或者缺乏合适的移植材料。在整形外科组织工程中,骨骼/软组织界面的再生特别受关注。然而,除了模仿天然组织的微观结构之外,这还需要创建具有受控的生化线索梯度的生物材料支架。为了这个目的,设计了将生物分子梯度共价固定在通过电纺丝产生的对准的合成纳米纤维支架上的方案。表面引发的原子转移自由基聚合可控制在支架表面上含有反应性官能团的聚合物刷的生长,特别是聚甲基丙烯酸缩水甘油酯(PGMA),其含有可通过亲核试剂(如胺或胺)与生物分子结合的环氧基。优化了二维模型系统中基于PGMA的生物分子附着方案。创建链间间距较大的刷子(通过用惰性分子替换一部分ATRP引发剂),并通过掺入水溶性单体(甲基丙烯酸羟乙酯,HEMA)来改善其水溶胀性,显示出增加可以结合至聚合物表面的肽的量。初步结果表明,该系统可用于在对齐的电纺支架上创建共价固定的生物分子梯度。电纺聚合物纤维。由于PMPC具有出色的血液相容性,这些材料在血管组织工程中显示出巨大的希望。

著录项

  • 作者

    Mecklenburg Gabriel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号