首页> 外文OA文献 >Deep unsupervised clustering with Gaussian mixture variational autoencoders
【2h】

Deep unsupervised clustering with Gaussian mixture variational autoencoders

机译:使用高斯混合变分自动编码器进行深度无监督聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study a variant of the variational autoencoder model with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the standard variational approach in these models is unsuited for unsupervised clustering, and mitigate this problem by leveraging a principled information-theoretic regularisation term known as consistency violation. Adding this term to the standard variational optimisation objective yields networks with both meaningful internal representations and well-defined clusters. We demonstrate the performance of this scheme on synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct, interpretable and result in achieving higher performance on unsupervised clustering classification than previous approaches.
机译:我们以高斯混合作为先验分布研究了变分自动编码器模型的变体,目标是通过深度生成模型执行无监督聚类。我们观察到,这些模型中的标准变分方法不适用于无监督的聚类,并通过利用称为一致性冲突的原则化信息理论正则化术语来缓解此问题。将此术语添加到标准变量优化目标中,可以得到具有有意义的内部表示形式和定义明确的群集的网络。我们在合成数据MNIST和SVHN上证明了该方案的性能,表明所获得的聚类是独特的,可解释的,并且在无监督聚类分类方面比以前的方法具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号