首页> 外文OA文献 >Statistical approaches to connectivity estimation for multivariate times series with application to EEG data
【2h】

Statistical approaches to connectivity estimation for multivariate times series with application to EEG data

机译:多变量时间序列连通性估计的统计方法及其在脑电数据中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the analysis of EEG data, there has been much interest in functional connectivity network modelling. However, the high-dimensional nature of this type of data renders conventional network analysis methods intractable.udOne popular approach consists of treating EEG signals as multidimensional time series, and then analysing them in the spectral domain. For this, we need good estimators for the inverse spectral density function (SDF) matrix. However, issues of ill-definedness or singularities oftenudarise.udThere exist many regularisation methods designed to address these problems. Amongst them, shrinkage has received particular interest in recent work. A large amount of research has gone into the development of shrinkage methods for real-valued covariance matrices, but they canudalso be applied to the estimation of inverse SDF matrices. This PhD project aims to:ud• Further shrinkage estimation in the frequency domain. We show how the equivalent of the Ledoit-Wolf shrinkage estimator for spectral matrices can be improved upon using a Rao-Blackwell estimator. We also further a non-linear method based on Random MatrixudTheory (RMT);ud• Improve the estimation of inverse spectral matrices and associated variables called the partial coherences, which measure direct conditional dependence between any two variables in a multidimensional system. We discuss the impact of shrinkage and another regularisation method on the quality of the partial coherence estimates, and show how these methodologies can be improved for this purpose;ud• In frequency domain analysis, results are derived for each frequency, over a set of discretised frequencies. However, we are interested in deriving an overall result for the entire band. We investigate the performance of p-value combiners for frequency-domain data.udAll of these results are applied to EEG data collected from 34 schizophrenic subjects and 24 healthy control individuals, and compared with conventional methods in terms of matrix loss and graph distance.
机译:在EEG数据分析中,人们对功能连接网络建模非常感兴趣。但是,此类数据的高维特性使常规的网络分析方法变得难以处理。 ud一种流行的方法包括将EEG信号视为多维时间序列,然后在频谱域中对其进行分析。为此,我们需要逆频谱密度函数(SDF)矩阵的良好估算器。但是,定义不明确或奇异的问题经常会 udarise。 ud存在许多旨在解决这些问题的正则化方法。其中,收缩对最近的工作特别感兴趣。对于实值协方差矩阵的收缩方法的开发已经进行了大量的研究,但是它们也可以应用于逆SDF矩阵的估计。该博士项目旨在: ud•在频域中进一步收缩估计。我们展示了如何在使用Rao-Blackwell估计量时提高Ledoit-Wolf收缩率估计量对于光谱矩阵的等效性。我们还进一步基于随机矩阵 udTheory(RMT); ud•改进了反谱矩阵和相关变量(称为部分相干性)的估计,该方法可测量多维系统中任意两个变量之间的直接条件相关性。我们讨论了收缩和另一种正则化方法对部分相干估计质量的影响,并展示了如何为此目的改进这些方法; ud•在频域分析中,在一组频率上得出每个频率的结果离散频率。但是,我们有兴趣得出整个频段的总体结果。我们将p值组合器用于频域数据的性能进行了研究。 ud所有这些结果都应用于从34位精神分裂症患者和24位健康对照个体收集的EEG数据,并在矩阵损失和图形距离方面与常规方法进行了比较。

著录项

  • 作者

    Schneider-Luftman Deborah;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号