首页> 外文OA文献 >In-Situ Catalytic Surface Modification of Micro-Structured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) Oxygen Permeable Membrane Using Vacuum-Assisted technique
【2h】

In-Situ Catalytic Surface Modification of Micro-Structured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) Oxygen Permeable Membrane Using Vacuum-Assisted technique

机译:原位催化表面改性微结构La0.6sr0.4Co0.2Fe0.8O3-δ(LsCF)透氧膜的真空辅助技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper aims at investigating the means to carry out in-situ surface modification of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) oxygen permeable membrane by using vacuum assisted technique. The unique structure of the LSCF hollow fibre membrane used in this study, which consists of an outer dense oxygen separation layer and conical-shaped microchannels open at the inner surface has allowed the membrane to be used as oxygen separation membrane and as a structured substrate for where catalyst can be deposited. A catalyst solution of similar material, LSCF was prepared using sol-gel technique. Effects of calcination temperature and heating rate were investigated using XRD and TGA to ensure pure perovskites structure of LSCF was obtained. It was found that a lower calcination temperature can be used to obtain pure perovskite phase if slower heating rate is used. The SEM photograph shows that the distribution of catalyst onto the membrane microchannels using in-situ deposition technique was strongly related to the viscosity of LSCF catalytic sol. Interestingly, it was found that the amount of catalyst deposited using viscous solution was slightly higher than the less viscous sol. This might be due to the difficulty of catalyst sol to infiltrate the membrane and as a result, thicker catalyst layer was observed at the lumen rather than onto the conical-shaped microchannels. Therefore, the viscosity of catalyst solution and calcination process should be precisely controlled to ensure homogeneous catalyst layer deposition. Analysis of the elemental composition will be studied in the future using energy dispersive X-ray Spectroscopy (EDX) to determine the elements deposited onto the membranes. Once the elemental analysis is confirmed, oxygen permeation analysis will be carried out.
机译:本文旨在研究采用真空辅助技术对La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)透氧膜进行原位表面改性的方法。这项研究中使用的LSCF中空纤维膜的独特结构由外部致密的氧气分离层和在内表面开口的圆锥形微通道组成,使得该膜可用作氧气分离膜和结构化底物可以沉积催化剂的地方。使用溶胶-凝胶技术制备了类似材料的催化剂溶液LSCF。用XRD和TGA研究了煅烧温度和加热速率的影响,以确保获得纯的LSCF钙钛矿结构。已经发现,如果使用较低的加热速率,则较低的煅烧温度可用于获得纯钙钛矿相。 SEM照片表明,使用原位沉积技术将催化剂分配到膜微通道上与LSCF催化溶胶的粘度密切相关。有趣的是,发现使用粘性溶液沉积的催化剂的量略高于粘性较低的溶胶。这可能是由于催化剂溶胶难以渗入膜而导致的,结果是在内腔而不是锥形微通道上观察到了较厚的催化剂层。因此,应精确控制催化剂溶液的粘度和煅烧过程,以确保均匀的催化剂层沉积。将来将使用能量色散X射线光谱(EDX)研究元素组成的分析,以确定沉积在膜上的元素。一旦确定了元素分析,将进行氧气渗透分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号