首页> 外文OA文献 >High efficiency recuperated ceramic gas turbine engines for small unmanned air vehicle propulsion
【2h】

High efficiency recuperated ceramic gas turbine engines for small unmanned air vehicle propulsion

机译:用于小型无人驾驶飞行器推进的高效回收陶瓷燃气涡轮发动机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To perform long missions, small unmanned air vehicles (UAVs) need efficient, lightweight propulsion systems that can operate on energy dense fuels. Gas turbines offer better reliability, life, fuel flexibility, noise, and vibration than internal combustion (IC) engines, but they are uncompetitive due to fuel efficiencies around 6%. At this scale, conventional efficiency improvement approaches such as high pressure ratios and cooled metal turbines are impractical. Ceramic turbines could withstand high temperatures without cooling, but their life and reliability have been inadequate.udThis work explores the hypothesis that a low pressure ratio, highly recuperated ceramic engine design could overcome these problems. First, an accepted water vapor erosion model is extended to correctly account for the effects of recuperation, fuel type, and atmospheric humidity on the burned gas water vapor content. The results show that ceramic turbines without environmental barrier coatings can last 10,000 hours or more in highly recuperated engines, even at temperatures exceeding 1200[degrees]C.udNext, a new design for a small recuperated ceramic engine is developed and analyzed, in which blade speeds are limited to 270 m/s – about half the typical value. A CARES slow crack growth analysis indicates this will lead to vastly improved life and reliability. The literature on foreign object damage and production costs suggests likely improvements in those areas, as well.udFinally, an original ceramic recuperator is developed to fit the proposed engine design. Tradeoffs between fabrication constraints, weight, volume, effectiveness, pressure losses, and other considerations are explored through analysis, simulations, and experiments. For one design, these predict a thermal effectiveness in the 84-87% range at a specific weight of 44 grams per gram/second of airflow, surpassing the current state of the art by a factor of 1.25-1.5. A prototype designed for 1100[degrees]C operation was tested at 675[degrees]C exhaust inlet temperature. It did not crack or leak, and the performance roughly matched analytical predictions. With a heat exchanger of this type, a small, low pressure ratio turboshaft engine could achieve an efficiency of 23%, making it highly competitive with other state of the art propulsion systems by almost all performance metrics.udIn sum, this work contributes a novel ceramic recuperator that can enable low pressure ratio gas turbines to achieve high fuel efficiencies, and provides a significant extension of ceramic turbine life and reliability theory that shows such engines could achieve long service lives.
机译:为了执行长期任务,小型无人飞行器(UAV)需要高效,轻便的推进系统,该系统可使用能量密集型燃料运行。与内燃机相比,燃气轮机具有更高的可靠性,寿命,燃油灵活性,噪音和振动性能,但由于燃油效率约为6%,因此它们没有竞争力。在这种规模上,常规的效率改进方法(例如高压比和冷却的金属涡轮机)是不切实际的。陶瓷涡轮机可以在不冷却的情况下承受高温,但是其寿命和可靠性一直不足。 ud这项工作探索了一种假设,即低压力比,高度换热的陶瓷发动机设计可以克服这些问题。首先,扩展了公认的水蒸气侵蚀模型,以正确考虑回热,燃料类型和大气湿度对燃烧气体水蒸气含量的影响。结果表明,即使在温度超过1200℃的情况下,即使在温度超过1200℃的情况下,没有环境屏障涂层的陶瓷涡轮机也可以使用10,000小时或更长时间。刀片速度限制为270 m / s –约为典型值的一半。 CARES缓慢的裂纹扩展分析表明,这将大大提高使用寿命和可靠性。关于异物损坏和生产成本的文献也暗示了这些领域的可能改进。 ud最后,开发了原始的陶瓷换热器,以适应建议的发动机设计。通过分析,模拟和实验探索了制造约束,重量,体积,有效性,压力损失和其他考虑因素之间的折衷。对于一种设计,这些预测在单位重量为44克/克/秒的气流下的热效率在84-87%的范围内,比现有技术高出1.25-1.5倍。设计用于1100°C操作的原型在675°C的排气入口温度下进行了测试。它没有破裂或泄漏,其性能大致与分析预测相符。使用这种类型的热交换器,小型,低压力比的涡轮轴发动机可以实现23%的效率,使其在几乎所有性能指标上均与其他先进的推进系统具有高度竞争力。新型陶瓷换热器,可以使低压比燃气轮机实现高燃油效率,并显着延长了陶瓷涡轮的寿命和可靠性理论,表明这种发动机可以实现较长的使用寿命。

著录项

  • 作者

    Vick Michael J.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号