首页> 外文OA文献 >Logic Programs as Declarative and Procedural Bias in Inductive Logic Programming
【2h】

Logic Programs as Declarative and Procedural Bias in Inductive Logic Programming

机译:逻辑程序作为归纳逻辑程序设计中的声明和程序偏差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machine Learning is necessary for the development of Artificial Intelligence, as pointed out by Turing in his 1950 article ``Computing Machinery and Intelligence''. It is in the same article that Turing suggested the use of computational logic and background knowledge for learning. This thesis follows a logic-based machine learning approach called Inductive Logic Programming (ILP), which is advantageous over other machine learning approaches in terms of relational learning and utilising background knowledge. ILP uses logic programs as a uniform representation for hypothesis, background knowledge and examples, but its declarative bias is usually encoded using metalogical statements. This thesis advocates the use of logic programs to represent declarative and procedural bias, which results in a framework of single-language representation. udWe show in this thesis that using a logic program called the top theory as declarative bias leads to a sound and complete multi-clause learning system MC-TopLog. It overcomes the entailment-incompleteness of Progol, thus outperforms Progol in terms of predictive accuracies on learning grammars and strategies for playing Nim game. MC-TopLog has been applied to two real-world applications funded by Syngenta, which is an agriculture company. udA higher-order extension on top theories results in meta-interpreters, which allow the introduction of new predicate symbols. Thus the resulting ILP system Metagol can do predicate invention, which is an intrinsically higher-order logic operation. Metagol also leverages the procedural semantic of Prolog to encode procedural bias, so that it can outperform both its ASP version and ILP systems without an equivalent procedural bias in terms of efficiency and accuracy. This is demonstrated by the experiments on learning Regular, Context-free and Natural grammars. Metagol is also applied to non-grammar learning tasks involving recursion and predicate invention, such as learning a definition of staircases and robot strategy learning. Both MC-TopLog and Metagol are based on a $op$-directed framework, which is different from other multi-clause learning systems based on Inverse Entailment, such as CF-Induction, XHAIL and IMPARO. Compared to another $op$-directed multi-clause learning system TAL, Metagol allows the explicit form of higher-order assumption to be encoded in the form of meta-rules.
机译:图灵在其1950年的文章``计算机械与智能''中指出,机器学习对于人工智能的发展是必不可少的。在同一篇文章中,图灵建议使用计算逻辑和背景知识进行学习。本文遵循称为归纳逻辑编程(ILP)的基于逻辑的机器学习方法,该方法在关系学习和利用背景知识方面优于其他机器学习方法。 ILP使用逻辑程序作为假设,背景知识和示例的统一表示形式,但是其声明性偏见通常是使用逻辑语句来编码的。本文主张使用逻辑程序来表示声明性和程序性偏见,从而形成一种单语言表示的框架。 ud我们在本文中证明,使用称为“顶层理论”的逻辑程序作为声明性偏见会导致一个健全而完整的多子句学习系统MC-TopLog。它克服了Progol的不完全性,因此在学习语法和玩Nim游戏的策略的预测准确性方面优于Progol。 MC-TopLog已应用于由农业公司先正达资助的两个实际应用中。 ud对顶级理论的高阶扩展会导致元解释器,从而允许引入新的谓词符号。因此,所得的ILP系统Metagol可以做出谓词发明,这本质上是高阶逻辑运算。 Metagol还利用Prolog的过程语义来编码过程偏差,因此就效率和准确性而言,它可以在不具有等效过程偏差的情况下胜过ASP版本和ILP系统。学习常规,上下文无关和自然语法的实验证明了这一点。 Metagol还应用于涉及递归和谓词发明的非语法学习任务,例如学习楼梯的定义和机器人策略学习。 MC-TopLog和Metagol都基于$ top $指导的框架,这与其他基于逆蕴涵的多子句学习系统(例如CF-Induction,XHAIL和IMPARO)不同。与另一个由$ top $指导的多子句学习系统TAL相比,Metagol允许以元规则的形式对高阶假设的显式形式进行编码。

著录项

  • 作者

    Lin Dianhuan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号