首页> 外文OA文献 >Wireless sensor networks using network coding for structural health monitoring
【2h】

Wireless sensor networks using network coding for structural health monitoring

机译:使用网络编码进行结构健康监测的无线传感器网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless Sensor Networks (WSNs) have been deployed for the purpose of structural health monitoring (SHM) of civil engineering structures, e.g. bridges. SHM applications can potentially produce a high volume of sensing data, which consumes much transmission power and thus decreases the lifetime of the battery-run networks. We employ the network coding technique to improve the network efficiency and prolong its lifetime. By increasing the transmission power, we change the node connectivity and control the number of nodes that can overhear transmitted messages so as to hopefully realize the capacity gain by use of network coding. ud In Chapter 1, we present the background, to enable the reader to understand the need for SHM, advantages and drawbacks of WSNs and potential the application of network coding techniques has. In Chapter 2 we provide a review of related research explaining how it relates to our work, and why it is not fully applicable in our case.ud In Chapter 3, we propose to control transmission power as a means to adjust the number of nodes that can overhear a message transmission by a neighbouring node. However, too much of the overhearing by high power transmission consumes aggressively limited battery energy. We investigate the interplay between transmission power and network coding operations in Chapter 4. We show that our solution reduces the overall volume of data transfer, thus leading to significant energy savings and prolonged network lifetime. We present the mathematical analysis of our proposed algorithm. By simulation, we also study the trade-offs between overhearing and power consumption for the network coding scheme. ud In Chapter 5, we propose a methodology for the optimal placement of sensor nodes in linear network topologies (e.g., along the length of a bridge), that aims to minimise the link connectivity problems and maximise the lifetime of the network. Both simple packet relay and network coding are considered for the routing of the collected data packets towards two sink nodes positioned at both ends of the bridge. Our mathematical analysis, verified by simulation results, shows that the proposed methodology can lead to significant energy saving and prolong the lifetime of the underlying wireless sensor network.ud Chapter 6 is dedicated to the delay analysis. We analytically calculate the gains in terms of packet delay obtained by the use of network coding in linear multi-hop wireless sensor network topologies. Moreover, we calculate the exact packet delay (from the packet generation time to the time it is delivered to the sink nodes) as a function of the location of the source sensor node within the linear network. The derived packet delay distribution formulas have been verified by simulations and can provide a benchmark for the delay performance of linear sensor networks.ud In the Chapter 7, we propose an adaptive version of network coding based algorithm. In the case of packet loss, nodes do not necessary retransmit messages as they are able to internally decide how to cope with the situation. The goal of this algorithm is to reduce the power consumption, and decrease delays whenever it can. This algorithm achieves the delay similar to that of three-hop direct-connectivity version of the deterministic algorithm, and consumes power almost like one-hop direct-connectivity version of deterministic algorithm. In very poor channel conditions, this protocol outperforms the deterministic algorithm both in terms of delay and power consumption.ud In Chapter 8, we explain the direction of our future work. Particularly, we are interested in the application of combined TDMA/FDMA technique to our algorithm.
机译:无线传感器网络(WSN)已被部署用于土木工程结构的结构健康监测(SHM),例如桥梁。 SHM应用程序可能会产生大量的传感数据,这会消耗大量的传输功率,从而缩短电池供电网络的寿命。我们采用网络编码技术来提高网络效率并延长其使用寿命。通过增加传输功率,我们改变了节点的连通性,并控制了可以监听已传输消息的节点数,从而有望通过网络编码实现容量的增加。在第一章中,我们介绍了背景知识,以使读者能够理解SHM的需求,WSN的优缺点以及网络编码技术的潜在应用。在第2章中,我们提供了相关研究的综述,解释了它与我们的工作之间的关系,以及为什么它不能完全适用于我们的情况。 ud在第3章中,我们建议控制传输功率,作为调整节点数量的一种手段可以监听相邻节点的消息传输。然而,高功率传输的偷听行为过多地消耗了电池能量。我们将在第4章中研究传输功率与网络编码操作之间的相互作用。我们表明,我们的解决方案减少了数据传输的整体量,从而显着节省了能源并延长了网络寿命。我们介绍了我们提出的算法的数学分析。通过仿真,我们还研究了网络编码方案在监听和功耗之间的权衡。 ud在第5章中,我们提出了一种用于在线性网络拓扑中(例如,沿着网桥的长度)最佳放置传感器节点的方法,旨在最小化链路连接问题并最大化网络的寿命。简单的分组中继和网络编码都被考虑用于将收集到的数据分组路由到位于桥两端的两个宿节点。仿真结果验证了我们的数学分析,结果表明所提出的方法可以节省大量能源,并延长基础无线传感器网络的寿命。 ud第6章专门介绍了延迟分析。我们通过分析在线性多跳无线传感器网络拓扑中使用网络编码获得的数据包延迟来分析增益。此外,我们根据线性网络中源传感器节点的位置来计算确切的数据包延迟(从数据包生成时间到将其发送到接收节点的时间)。通过仿真验证了导出的分组延迟分布公式,可以为线性传感器网络的延迟性能提供基准。 ud在第7章中,我们提出了一种基于网络编码的自适应版本算法。在丢包的情况下,节点不必重新传输消息,因为它们能够内部决定如何应对这种情况。该算法的目标是减少功耗,并尽可能减少延迟。该算法获得的延迟类似于确定性算法的三跳直接连接版本,并且消耗的功率几乎与确定性算法的一跳直接连接版本相同。在极差的信道条件下,此协议在延迟和功耗方面均胜过确定性算法。 ud在第8章中,我们解释了未来工作的方向。特别地,我们对将TDMA / FDMA组合技术应用于我们的算法感兴趣。

著录项

  • 作者

    Skulic Jelena;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号