首页> 外文OA文献 >Unraveling complex networks under the prism of dynamical processes: relations between structure and dynamics
【2h】

Unraveling complex networks under the prism of dynamical processes: relations between structure and dynamics

机译:在动态过程的棱镜下解开复杂的网络:结构与动态之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider relations of structure and dynamics in complex networks. Firstly, a dynamical perspective on the problem of community detection is developed: how to partition a graph into sets of nodes which have stronger relations to each other than to other nodes in the network. We show how several approaches to this problem can be re-interpreted from a dynamical perspective. It is demonstrated how this perspective can circumvent limitations of commonly used, structure based community detection methods such as Modularity or the map-equation, which are prone to over-partition communities of large effective diameter. Secondly, we present graph-theoretical measures to quantify edge-to-edge relations, inspired by the notion of flow redistribution induced by edge failures. We demonstrate how our measures can reveal the dynamical interplay between the edges in a network, including potentially non-local interactions. We showcase the general applicability of our edge-centric measures through analyses of several example systems from different areas. Finally, relations between structure and dynamics are discussed in the context of neural networks. We show how the topology of networks of leaky-integrate-and-fire neurons can be changed such that a “slow-dynamics” arises, in which groups of neurons vary their firing rates coherently, and discuss how this is reflected in spectrum of the network’s coupling matrix. We further consider the problem of detecting cell assemblies, groups of neurons which share a more similar temporal activity pattern when compared to members of other groups, in time series of neural firing events. Using a biophysically inspired pairwise coupling measure we can infer a functional network from the data, and map the task of finding cell assemblies onto a community detection problem, which can be solved within our dynamical framework.
机译:我们考虑复杂网络中结构和动力学的关系。首先,提出了关于社区检测问题的动态观点:如何将图划分为彼此之间关系比与网络中其他节点关系更强的节点集。我们展示了如何从动态角度重新解释解决此问题的几种方法。证明了这种观点如何克服常见的,基于结构的社区检测方法(例如模块化或地图等式)的局限性,这些方法容易导致有效直径大的社区过度划分。其次,我们提出了基于图论的方法来量化边对边关系,这是受边沿破坏引起的流量重新分配的概念启发的。我们展示了我们的度量如何揭示网络边缘之间的动态相互作用,包括潜在的非局部相互作用。通过分析不同领域的几个示例系统,我们展示了以边缘为中心的度量的一般适用性。最后,在神经网络的背景下讨论了结构与动力学之间的关系。我们展示了如何更改泄漏整合和发射神经元网络的拓扑,从而产生“慢速动力学”,其​​中神经元组会连贯地改变其发射频率,并讨论如何在神经元频谱中反映出这一点。网络的耦合矩阵。我们进一步考虑在神经激发事件的时间序列中检测细胞装配体(与其他组的成员相比具有更相似的时间活动模式的神经元组)的问题。使用受到自然物理学启发的成对耦合测量,我们可以从数据中推断出一个功能网络,并将寻找细胞装配的任务映射到一个社区检测问题上,这可以在我们的动力学框架内解决。

著录项

  • 作者

    Schaub Michael Thomas;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号