首页> 外文OA文献 >On the preparation and characterisation of MCM-41 supported heterogeneous nickel and molybdenum catalysts
【2h】

On the preparation and characterisation of MCM-41 supported heterogeneous nickel and molybdenum catalysts

机译:mCm-41负载型非均相镍和钼催化剂的制备与表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MCM-41 is an ordered mesoporous material, displaying a honeycomb-like structure of uniform mesopores (3 nm in diameter) running through a matrix of amorphous silica. Because of the high porosity (pore volume » 1.0 ml g-1) and concomitant large surface area (approximately 1,000 m2 g-1) MCM-41 is in principle ideally suited to be used as a support material for heterogeneous catalysts, as it offers the possibility to apply (precursors of) active phases in a highly dispersed fashion. Unfortunately there is one pronounced drawback associated with MCM-41, viz. its limited stability towards a number of catalyst precursors. Therefore new methods have been explored to apply catalytically active phases, notably nickel / nickel oxide and molybdenum oxide, inside the mesopores of MCM-41. The results of these research efforts have been compiled in this thesis.For the application of well-dispersed nickel (oxide) nanoparticles inside the mesopores use has been made of the favourable properties of an aqueous solution containing a chelated nickel precursor, viz. nickel citrate. During drying after incipient wetness impregnation the viscosity of such a solution increases tremendously, thus immobilising the nickel precursor inside the mesopores. Immobilisation is further brought about by hydrogen bonding interactions between the nickel citrate precursor complexes and the pore walls of the all-silica MCM-41 support material. Upon calcination the precursor complexes decompose and nickel oxide nanoparticles are formed, which are well-dispersed and situated exclusively inside the mesopores of the support. Reduction yields metallic nickel nanoparticles. During all the catalyst preparation processes the unique structure of the support material is well-retained.Two new methods have been developed for the application of molybdenum oxide inside the mesopores of MCM-41. Both methods rely on incipient wetness impregnation of all-silica MCM-41 with a suitable (aqueous) molybdenum precursor solution. The first molybdenum precursor used consists of trivalent molybdenum chloride complexes, which have been obtained by electrochemical reduction. The other precursor is obtained by (slowly) adding ammonium heptamolybdate (AHM) to a 1 : 1 solution of hydrochloric acid and water, yielding MoO2Cl2-complexes. Catalyst preparation results, after drying and calcination, in MoO3/MCM-41 catalysts exhibiting unprecedented high loadings ánd dispersions of MoO3. Moreover, the favourable support properties are completely retained when one of these two precursors is used. Strikingly different results are obtained when a common catalyst preparation procedure is followed, using an aqueous solution of AHM: in that case the support structure is completely destroyed.MCM-41 supported and reference molybdenum oxide catalysts have been tested in the catalytic oxidation of ethane. A much higher activity was obtained for MoO3 catalysts supported by MCM-41, compared to Aerosil-200 supported and bulk molybdenum oxide catalysts, thus corroborating the very high dispersion of MoO3 inside the mesopores of the MCM-41 support. A kinetic characterisation indicated that catalysis takes place via a so-called pseudo-redox mechanism and that (internal) diffusion limitations do not occur with the MCM-41 supported catalysts. Moreover, catalyst preparation with MoO2Cl2 as a precursor yielded more active catalysts than preparation with a trivalent precursor when MCM-41 was the support material. With Aerosil-200 an MoO2Cl2-precursor yields relatively large MoO3 platelets of a low dispersion, situated next to the support.
机译:MCM-41是一种有序的介孔材料,显示出穿过无定形二氧化硅基质的均匀中孔(直径3 nm)的蜂窝状结构。由于高孔隙率(孔体积»1.0 ml g-1)和随之而来的大表面积(约1,000 m2 g-1),MCM-41原则上非常适合用作非均相催化剂的载体材料有可能以高度分散的方式施加(前驱)活性相。不幸的是,有一个明显的缺点与MCM-41相关,即。它对多种催化剂前体的稳定性有限。因此,已经探索出新的方法在MCM-41的中孔内施加催化活性相,特别是镍/氧化镍和氧化钼。这些研究工作的结果已汇总在本文中。对于在中孔内分散良好的镍(氧化物)纳米粒子的应用,已经利用了含有螯合镍前体的水溶液的有利性能,即。柠檬酸镍。在初期湿润浸渍后的干燥过程中,这种溶液的粘度极大地增加,从而将镍前体固定在中孔内。通过柠檬酸镍前体复合物与全硅MCM-41载体材料的孔壁之间的氢键相互作用进一步实现了固定化。在煅烧时,前体复合物分解并形成氧化镍纳米颗粒,其被充分分散并且仅位于载体的中孔内部。还原产生金属镍纳米颗粒。在所有催化剂制备过程中,载体材料的独特结构都得到了很好的保留。已经开发出两种新的方法,将氧化钼应用于MCM-41的中孔内。两种方法都依赖于用合适的(水性)钼前体溶液对全硅MCM-41进行初湿浸渍。所用的第一钼前体由三价氯化钼配合物组成,该三价氯化钼配合物是通过电化学还原获得的。另一前体是通过(缓慢)将七钼酸铵(AHM)添加到盐酸和水的1:1溶液中,生成MoO2Cl2复合物。经过干燥和煅烧后,MoO3 / MCM-41催化剂的催化剂制备结果呈现出前所未有的高负载量和MoO3分散度。此外,当使用这两种前体之一时,完全保留了有利的支撑性能。当使用AHM的水溶液按照常规催化剂制备程序获得惊人的不同结果:在这种情况下,载体结构被完全破坏.MCM-41载体和参考氧化钼催化剂已在乙烷的催化氧化中进行了测试。与Aerosil-200负载和块状氧化钼催化剂相比,MCM-41负载的MoO3催化剂具有更高的活性,从而证实了MoO3在MCM-41载体的介孔内的高度分散。动力学表征表明,催化作用是通过所谓的假氧化还原机理发生的,并且使用MCM-41负载的催化剂不会发生(内部)扩散限制。而且,当以MCM-41为载体材料时,用MoO2Cl2作为前体的催化剂制备比使用三价前体的制备更具活性。使用Aerosil-200,MoO2Cl2-前驱体可产生较大的低分散度的MoO3血小板,其位于载体旁边。

著录项

  • 作者

    Lensveld Dennis;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号