A radio network is a distributed system consisting of a large number of tiny sensors with low-power transceivers and no central controller. One of the most important problems in such networks is to minimize the energy consumption, and maximize the network lifetime. In the initialization problem (also known as naming) each of the $n$ indistinguishable (anonymous) nodes in a given network is assigned a unique identifier, ranging from $1$ to $n$. We consider a network where $n$ nodes (processors) are randomly deployed in a square (resp. a cube) $X$. The network is assumed to be synchronous and the time to be slotted. Two nodes can communicate only if they are at a distance of at most $r$ from each other ($r$ is the transmitting/receiving range). Moreover, if two or more neighbors of a processor $u$ are transmitting concurrently at the same time slot, $u$ cannot receive either of their messages (collision). We suppose also $n$ and $|X|$ represent the only topological knowledge in each node. To solve the initialization problem, we propose an energy-efficient randomized algorithm running in at most $\mathcal{O}\l(n^{3/4}\,\log{(n)}^{1/4}\r)$ time slots, with no station being awake for more than $\mathcal{O}\l(n^{1/4}\,\log{(n)}^{3/4}\r)$ time slots.
展开▼
机译:无线电网络是一个分布式系统,由大量带有低功率收发器且没有中央控制器的微型传感器组成。在这种网络中最重要的问题之一是最小化能量消耗,并最大化网络寿命。在初始化问题(也称为命名)中,给定网络中的每个$ n $不可区分(匿名)节点都分配了一个唯一标识符,范围从$ 1 $到$ n $。我们考虑一个网络,其中$ n $个节点(处理器)随机部署在一个正方形(分别是一个多维数据集)$ X $中。假定网络是同步的,并且要分配时间。只有两个节点彼此之间的距离最大为$ r $时,它们才能通信($ r $是发送/接收范围)。此外,如果处理器$ u $的两个或更多邻居在同一时隙同时发送,则$ u $无法接收其任何一条消息(冲突)。我们假设$ n $和$ | X | $表示每个节点中唯一的拓扑知识。为了解决初始化问题,我们提出了一种高效节能的随机算法,该算法最多运行$ \ mathcal {O} \ l(n ^ {3/4} \,\ log {(n)} ^ {1/4} \ r)$个时隙,没有工作站的唤醒时间超过$ \ mathcal {O} \ l(n ^ {1/4} \,\ log {(n)} ^ {3/4} \ r)$个时间插槽。
展开▼