首页> 外文OA文献 >Cycles containing all vertices of maximum degree
【2h】

Cycles containing all vertices of maximum degree

机译:包含最大度数的所有顶点的循环

摘要

For a graph G and an integer k, denote by Vk the set {v ε V(G) | d(v) ≥ k}. Veldman proved that if G is a 2-connected graph of order n with n ≤ 3k - 2 and |Vk| ≤ k, then G has a cycle containing all vertices of Vk. It is shown that the upper bound k on |Vk| is close to best possible in general. For the special case k = δ(G), it is conjectured that the condition |Vk| ≤ k can be omitted. Using a variation of Woodall's Hopping Lemma, the conjecture is proved under the additional condition that n ≤ 2δ(G) + δ(G) + 1. This result is an almost-generalization of Jackson's Theorem that every 2-connected k-regular graph of order n with n ≤ 3k is hamiltonian. An alternative proof of an extension of Jackson's Theorem is also presented.
机译:对于图G和整数k,用Vk表示集合{vεV(G)| d(v)≥k}。 Veldman证明,如果G是n≤3k-2且| Vk |的n阶2连通图。 ≤k,则G的循环包含Vk的所有顶点。显示| Vk |的上限k总的来说,它几乎是最好的。对于特殊情况k =δ(G),可以推测条件| Vk |。 ≤k可以省略。使用Woodall跳变引理的变体,在n≤2δ(G)+δ(G)+ 1的附加条件下证明了这一猜想。该结果几乎是杰克逊定理的概括,即每个2连通的k正则图n≤3k的n阶是哈密顿量。还提出了杰克逊定理扩展的另一种证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号