首页> 外文OA文献 >Energy propagation in dissipative systems Part II: Centrovelocity for nonlinear wave equations
【2h】

Energy propagation in dissipative systems Part II: Centrovelocity for nonlinear wave equations

机译:耗散系统中的能量传播第二部分:非线性波动方程的中心速度

摘要

We consider nonlinear wave equations, first order in time, of a specific form. In the absence of dissipation, these equations are given by a Poisson system, with a Hamiltonian that is the integral of some density. The functional I, defined to be the integral of the square of the waveform, is a constant of motion of the unperturbed system. It will be shown that Z, the center of gravity of this density, is canonically conjugate to I and can be used as a measure to locate the position of the waveform. By introducing new coordinates based on Z, we get expressions for the centrovelocity, Image, and the decay of I, which compare to the ones of part I, in both the conservative and the dissipative case. With the derived expressions, we investigate the decay of solitary waves of the Korteweg-de Vries equation, when different kinds of dissipation are added.
机译:我们考虑特定形式的非线性波动方程,其时间是一阶的。在没有耗散的情况下,这些方程式由泊松系统给出,哈密顿量是某个密度的积分。定义为波形平方的整数的函数I是不受干扰的系统的运动常数。可以看出,Z(该密度的重心)与I典型地共轭,可以用作定位波形位置的量度。通过引入基于Z的新坐标,我们可以得到在保守和耗散情况下与I部分的旋转速度,Image和I衰减的表达式。利用推导的表达式,我们研究了添加不同种类的耗散时Korteweg-de Vries方程的孤立波的衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号