首页> 外文OA文献 >Context-Aware Task Assignment in Ubiquitous Computing Environment - A Genetic Algorithm Based Approach
【2h】

Context-Aware Task Assignment in Ubiquitous Computing Environment - A Genetic Algorithm Based Approach

机译:普适计算环境中的上下文感知任务分配-一种基于遗传算法的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the advent of ubiquitous computing, a user is surrounded by a variety of devices including tiny sensor nodes, handheld mobile devices and powerful computers as well as diverse communication networks. In this networked society, the role of a human being is evolving from the data consumer to the data producer. In these changing circumstances, pipelined processing finds applications where the data obtained from the human producer needs to be processed and interpreted in real-time. For example, in an MHealth system, the vital signs acquired from the patient are processed in the pipelined fashion. This paper proposes a genetic algorithm (GA) based approach for the optimal assignment of pipelined processing tasks onto a chain of networked devices that minimizes total end-to-end processing delay considering knowledge about the communication and computation resources as the context information. Although some existing graph-based algorithms can solve this problem in polynomial time, we expect that GA can take less computational time and requires less memory while providing a reasonably good assignment. We compare the performance of GA approach with the graph-based approaches. It is observed that when the number of devices and the number of processing tasks are large, the GA approach performs better in terms of the satisfactory quality of the obtained sub-optimal solution considering the advantage of reduced computational time.
机译:随着无处不在的计算的出现,用户被各种各样的设备所包围,包括微型传感器节点,手持式移动设备和功能强大的计算机以及各种通信网络。在这个网络化的社会中,人类的角色正在从数据消费者演变为数据生产者。在这些不断变化的情况下,流水线处理找到了需要实时处理和解释从人工生产者那里获得的数据的应用程序。例如,在MHealth系统中,以流水线方式处理从患者那里获得的生命体征。本文提出了一种基于遗传算法(GA)的方法,用于将流水线处理任务最佳分配到网络设备链上,从而将有关通信和计算资源的知识作为上下文信息,从而最大程度地降低了总的端到端处理延迟。尽管一些现有的基于图的算法可以在多项式时间内解决此问题,但我们期望GA可以花费更少的计算时间,并且需要更少的内存,同时提供合理的分配。我们将GA方法与基于图的方法的性能进行了比较。可以看出,当设备数量和处理任务数量很大时,考虑到减少了计算时间的优势,GA方法在获得的次优解决方案的令人满意的质量方面表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号