首页> 外文OA文献 >Deep active learning for autonomous navigation.
【2h】

Deep active learning for autonomous navigation.

机译:用于自主导航的深度主动学习。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Imitation learning refers to an agent's ability to mimic a desired behavior by learning from bservations. A major challenge facing learning from demonstrations is to represent the demonstrations in a manner that is adequate for learning and efficient for real time decisions. Creating feature representations is especially challenging when extracted from high dimensional visual data. In this paper, we present a method for imitation learning from raw visual data. The proposed method is applied to a popular imitation learning domain that is relevant to a variety of real life applications; namely navigation. To create a training set, a teacher uses an optimal policy to perform a navigation task, and the actions taken are recorded along with visual footage from the first person perspective. Features are automatically extracted and used to learn a policy that mimics the teacher via a deep convolutional neural network. A trained agent can then predict an action to perform based on the scene it finds itself in. This method is generic, and the network is trained without knowledge of the task, targets or environment in which it is acting. Another common challenge in imitation learning is generalizing a policy over unseen situation in training data. To address this challenge, the learned policy is subsequently improved by employing active learning. While the agent is executing a task, it can query the teacher for the correct action to take in situations where it has low confidence. The active samples are added to the training set and used to update the initial policy. The proposed approach is demonstrated on 4 different tasks in a 3D simulated environment. The experiments show that an agent can effectively perform imitation learning from raw visual data for navigation tasks and that active learning can significantly improve the initial policy using a small number of samples. The simulated test bed facilitates reproduction of these results and comparison with other approaches.
机译:模仿学习是指代理人通过从观察中学习来模仿所需行为的能力。从演示中学习所面临的主要挑战是,以一种足以学习和实时决策的方式来演示演示。从高维视觉数据中提取特征表示时,尤其具有挑战性。在本文中,我们提出了一种从原始视觉数据进行模仿学习的方法。所提出的方法被应用于与各种现实生活相关的流行的模仿学习领域。即导航。为了创建训练集,教师使用最佳策略来执行导航任务,并从第一人称视角将所采取的动作与视觉镜头一起记录下来。特征被自动提取并用于通过深度卷积神经网络学习模仿老师的策略。然后,受过训练的代理可以根据发现自己所在的场景来预测要执行的动作。此方法是通用的,并且在不了解其执行任务,目标或环境的情况下对网络进行了训练。模仿学习中的另一个常见挑战是在训练数据中推广针对看不见情况的策略。为了应对这一挑战,随后通过采用主动学习来改进学习策略。座席执行任务时,它可以向教师查询正确的操作,以在信心不足的情况下采取措施。活动样本将添加到训练集中,并用于更新初始策略。在3D模拟环境中的4个不同任务上演示了该方法。实验表明,代理可以从原始视觉数据有效地执行导航任务的模仿学习,而主动学习可以使用少量样本显着改善初始策略。模拟测试台有助于这些结果的再现以及与其他方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号