首页> 外文OA文献 >Exploiting Food Choice Biases for Healthier Recipe Recommendation
【2h】

Exploiting Food Choice Biases for Healthier Recipe Recommendation

机译:利用食物选择偏向性来制定更健康的食谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

By incorporating healthiness into the food recommendation/ranking process we have the potential to improve the eating habits of a growing number of people who use the Internet as a source of food inspiration. In this paper, using insights gained from various data sources, we explore the feasibility of substituting meals that would typically be recommended to users with similar, healthier dishes.ududFirst, by analysing a recipe collection sourced from Allrecipes.com, we quantify the potential for finding replacement recipes, which are comparable but have different nutritional characteristics and are nevertheless highly rated by users. Building on this, we present two controlled user studies (n=107, n=111) investigating how people perceive and select recipes. We show participants are unable to reliably identify which recipe contains most fat due to their answers being biased by lack of information, misleading cues and limited nutritional knowledge on their part. By applying machine learning techniques to predict the preferred recipes, good performance can be achieved using low-level image features and recipe meta-data as predictors. ududDespite not being able to consciously determine which of two recipes contains most fat, on average, participants select the recipe with the most fat as their preference. The importance of image features reveals that recipe choices are often visually driven. A final user study (n=138) investigates to what extent the predictive models can be used to select recipe replacements such that users can be "nudged" towards choosing healthier recipes. Our findings have important implications for online food systems.
机译:通过将健康性纳入食品推荐/分级过程,我们有潜力改善越来越多使用互联网作为食品灵感来源的人们的饮食习惯。在本文中,我们利用从各种数据源中获得的见解,探索了用通常更相似,更健康的菜肴推荐给用户的餐食的可行性。 ud ud首先,通过分析来自Allrecipes.com的食谱收集,我们对数量进行了量化寻找替代食谱的潜力,这些食谱具有可比性,但具有不同的营养特征,但受到用户的高度评价。在此基础上,我们提出了两项​​受控的用户研究(n = 107,n = 111),以调查人们如何看待和选择食谱。我们显示,由于缺乏信息,误导性提示以及营养知识有限,他们的答案存在偏差,因此参与者无法可靠地确定哪种食谱中脂肪最多。通过应用机器学习技术来预测首选配方,使用低级图像特征和配方元数据作为预测指标可以实现良好的性能。 ud ud尽管无法自觉地确定两种食谱中哪一种的脂肪含量最高,但平均而言,参与者会选择脂肪含量最高的食谱作为自己的偏好。图像功能的重要性表明,配方选择通常是视觉驱动的。最终用户研究(n = 138)调查了预测模型可用于选择配方替代品的程度,以便可以“推挤”用户选择更健康的配方。我们的发现对在线食品系统具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号