首页> 外文OA文献 >SHM of Bridges: Characterising Thermal Response and Detecting Anomaly Events Using a Temperature-Based Measurement Interpretation Approach
【2h】

SHM of Bridges: Characterising Thermal Response and Detecting Anomaly Events Using a Temperature-Based Measurement Interpretation Approach

机译:桥梁的SHM:使用基于温度的测量解释方法表征热响应并检测异常事件

摘要

A major bottleneck preventing widespread use of Structural Health Monitoring (SHM) systems for bridges is the difficulty in making sense of the collected data. Characterising environmental effects in measured bridge behaviour, and in particular the influence of temperature variations, remains a significant challenge. This paper proposes a novel data-driven approach referred to as Temperature-Based Measurement Interpretation (TB-MI) approach to solve this challenge. The approach is composed of two key steps - (i) characterisation of thermal effects in bridges using a methodology referred to as Regression-Based Thermal Response Prediction (RBTRP) methodology, and (ii) detection of anomaly events by analysing differences between measured and predicted structural behaviour. Measurements from a laboratory truss structure that is setup to simulate a range of structural scenarios are employed to evaluate the performance of the TB-MI approach. The study examines how the predictive capability of the RBTRP methodology is influenced by dimensionality reduction and measurement down-sampling, which are common pre-processing techniques used to deal with high spatial and temporal density in measurements. It also proposes a novel anomaly detection technique referred to as signal subtraction method that detects anomaly events from time-series of prediction errors, which are computed as the difference between in-situ measurements and predictions obtained using the RBTRP methodology. Results demonstrate that the TB-MI approach has potential for integration within data interpretation frameworks of SHM systems of full-scale bridges.
机译:阻碍广泛使用桥梁结构健康监测(SHM)系统的主要瓶颈是难以理解所收集的数据。表征所测桥梁行为中的环境影响,尤其是温度变化的影响,仍然是一项重大挑战。本文提出了一种新颖的数据驱动方法,称为基于温度的测量解释(TB-MI)方法,以解决这一挑战。该方法包括两个关键步骤-(i)使用称为基于回归的热响应预测(RBTRP)方法的方法表征桥梁中的热效应,以及(ii)通过分析测量值与预测值之间的差异来检测异常事件结构行为。通过对实验室桁架结构进行设置以模拟一系列结构方案来进行测量,以评估TB-MI方法的性能。这项研究研究了RBTRP方法的预测能力如何受到降维和测量降采样的影响,降维和测量降采样是用于处理测量中高时空密度的常见预处理技术。它还提出了一种新颖的异常检测技术,称为信号减法,该技术从预测误差的时间序列中检测异常事件,这些预测事件被计算为就地测量和使用RBTRP方法获得的预测之间的差异。结果表明,TB-MI方法具有在大型桥梁SHM系统的数据解释框架内集成的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号