首页>
外文OA文献
>On the relation between local and charge-transfer exciton bindingenergies in organic photovoltaic materials
【2h】
On the relation between local and charge-transfer exciton bindingenergies in organic photovoltaic materials
展开▼
机译:关于有机光伏材料中局部和电荷转移激子结合能之间的关系
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
In organic photovoltaic devices two types of excitons can be generated for which different binding energies can be defined: the binding energy of the local exciton generated immediately after light absorption on the polymer and the binding energy of the charge-transfer exciton generated through the electron transfer from polymer to PCBM. Lowering these two binding energies is expected to improve the efficiency of the devices. Using (time-dependent) density functional theory, we studied whether a relation exists between the two different binding energies. For a series of related co-monomers, we found that the local exciton binding energy on a monomer is not directly related to that of the charge-transfer exciton on a monomer-PCBM complex because the variation in exciton binding energy depends mainly on the variation in electron affinity, which does not affect in a direct way the charge-transfer exciton binding energy. Furthermore, for the studied co-monomers and their corresponding trimers, we provide detailed information on the amount of charge transfer upon excitation and on the charge transfer excitation length. This detailed study of the excitation process reveals that the thiophene unit that links the donor and acceptor fragments of the co-monomer actively participates in the charge transfer process.
展开▼