首页> 外文OA文献 >Application of Bayesian networks to problems within obesity epidemiology
【2h】

Application of Bayesian networks to problems within obesity epidemiology

机译:贝叶斯网络在肥胖流行病学研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Obesity is a significant public health problem in the United Kingdom and many other parts of the world, including some low-income settings. Although obesity prevalence has been rising for several decades, governments have been slow to implement policies that may have an impact at a population level. Numerous socio-demographic factors have been linked with obesity, but are highly intercorrelated, and identifying relevant factors or at-risk population groups is difficult. This thesis uses a graphical modelling approach, specifically Bayesian networks, to model the joint distribution of socio-demographic factors and obesity related behaviour. The key advantages of graphical models in this context are their ability to model highly correlated data, and to represent complex relationships efficiently as network structure. Three separate pieces of work comprise this thesis. The first uses a sampling technique to identify the networks that best explain the observed data, and employs the common structural features of these networks to infer conditional dependencies present between socio-demographic variables and obesity related behaviour indicators. We find determinants of recreational physical activity differ between males and females, and age and ethnicity have a significant influence on snacking behaviour. The second piece of work usesBayesian networks to build a model of health behaviour given socio demographic input, and then applies this to data from the 2001 census in order to provide an estimate of the health behaviour of a real population. The final analysis uses Bayesian network structure to explore potential determinants of body fat deposition patterns and compares the results tothose derived from a Generalized Linear Model (GLM). Our approach successfully identifies the main determinants, age and Body Mass Index, although is not a genuine alternative due to a lack of sensitivity to less important determinants. Beyond the application to obesity, results of this thesis are of a wider relevance to epidemiology as the field moves towards an increased use of Machine Learning techniques. The work conducted has also met and overcome several technical issues that are likely to be of relevance to others exploring similar approaches.
机译:肥胖症是英国和世界许多其他地区(包括一些低收入人群)的重大公共卫生问题。尽管肥胖流行率已经上升了几十年,但各国政府在实施可能对人口水平产生影响的政策方面进展缓慢。许多社会人口统计学因素与肥胖有关,但高度相关,因此很难确定相关因素或高危人群。本文采用图形化建模方法,特别是贝叶斯网络,对社会人口因素与肥胖相关行为的联合分布进行建模。在这种情况下,图形模型的主要优势在于它们能够对高度相关的数据进行建模,并能够将复杂的关系有效地表示为网络结构。本论文由三部分组成。第一种方法是使用抽样技术来识别最能解释所观察到数据的网络,并利用这些网络的共同结构特征来推断社会人口统计学变量与肥胖相关行为指标之间存在的条件依赖性。我们发现男性和女性之间休闲体育活动的决定因素有所不同,并且年龄和种族对零食行为有重要影响。第二项工作使用贝叶斯网络在给定的社会人口统计输入的基础上建立健康行为模型,然后将其应用于2001年人口普查的数据,以提供对实际人口健康行为的估计。最终分析使用贝叶斯网络结构来探索人体脂肪沉积模式的潜在决定因素,并将结果与​​从广义线性模型(GLM)得出的结果进行比较。我们的方法成功地确定了主要决定因素,年龄和体重指数,尽管由于对次要决定因素缺乏敏感性,因此并不是真正的选择。除了应用于肥胖症之外,随着该领域朝着越来越多地使用机器学习技术的方向发展,本论文的结果与流行病学有着更广泛的联系。所开展的工作还解决并克服了可能与其他探索类似方法有关的技术问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号