首页> 外文OA文献 >Identification of squeeze-film damper bearings for aeroengine vibration analysis
【2h】

Identification of squeeze-film damper bearings for aeroengine vibration analysis

机译:用于航空发动机振动分析的挤压薄膜阻尼器轴承的识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accuracy of rotordynamic analysis of aeroengine structures is typically limited by a trade-off between the capabilities and the computational cost of the squeeze-film damper (SFD) bearing model used. Identification techniques provide a means of efficiently implementing complex nonlinear bearing models in practical rotordynamic analysis; thus facilitating design optimisation of the SFD and the engine structure. This thesis considers both identification from advanced numerical models and identification from experimental tests. Identification from numerical models is essential at the design stage, where rapid simulation of the dynamic performance of a variety of designs is required. Experimental identification is useful to capture effects that are difficult to model (e.g. geometric imperfections). The main contributions of this thesis are: • The development of an identification technique using Chebyshev polynomial fits to identify the numerical solution of the incompressible Reynolds equation. The proposed method manipulates the Reynolds equation to allow efficient and accurate identification in the presence of cavitation, the feed-groove, feed-ports, end-plate seals and supply pressure. • The first-ever nonlinear dynamic analysis on a realistically sized twin-spool aeroengine model that fulfills the aim of taking into account the complexities of both structure and bearing model while allowing the analysis to be performed, in reasonable time frames, on a standard desktop computer. • The introduction and validation of a nonlinear SFD identification technique that uses neural networks trained from experimental data to reproduce the input-output function governing a real SFD. Numerical solution of the Reynolds equation, using a finite difference (FD) formulation with appropriate boundary conditions, is presented. This provides the base data for the identification of the SFD via Chebyshev interpolation. The identified 'FD-Chebyshev' model is initially validated against the base (FD) model by application to a simple rotor-bearing system. The superiority of vibration prediction using the FD-Chebyshev model over simplified analytical SFD models is demonstrated by comparison with published experimental results. An enhanced FD-Chebyshev scheme is then implemented within the whole-engine analysis of a realistically sized representative twin-spool aeroengine model provided by a leading manufacturer. Use of the novel Chebyshev polynomial technique is repeatedly demonstrated to reduce computation times by a factor of 10 or more when compared to the basis (FD) model, with virtually no effect on the accuracy. Focus is then shifted to an empirical identification technique. Details of the commissioning of an identification test rig and its associated data acquisition system are presented. Finally, the empirical neural networks identification process for the force function of an SFD is presented and thoroughly validated. When used within the rotordynamic analysis of the test rig, the trained neural networks is shown to be capable of predicting complex nonlinear phenomena with remarkable accuracy. The results show that the neural networks are able to capture the effects of features that are difficult to model or peculiar to a given SFD.
机译:航空发动机结构的转子动力学分析的精度通常受到所使用的挤压膜阻尼器(SFD)轴承模型的性能和计算成本之间的权衡的限制。识别技术提供了一种在实际转子动力学分析中有效实施复杂非线性轴承模型的方法。从而促进了SFD和发动机结构的设计优化。本文考虑了从高级数值模型进行识别和从实验测试中进行识别。在设计阶段,需要快速模拟各种设计的动态性能,从数字模型进行识别是必不可少的。实验识别对于捕获难以建模的效果(例如几何缺陷)很有用。本文的主要贡献是:•使用Chebyshev多项式拟合的识别技术的发展,以识别不可压缩的雷诺方程的数值解。所提出的方法可以操纵雷诺方程,从而在出现气蚀,进料槽,进料口,端板密封和供气压力的情况下,进行有效而准确的识别。 •首次在现实尺寸的双阀芯航空发动机模型上进行非线性动力学分析,该分析实现了既考虑结构和轴承模型的复杂性,又允许在合理的时间范围内在标准台式机上进行分析的目的电脑。 •非线性SFD识别技术的引入和验证,该技术使用从实验数据训练而来的神经网络来再现控制实际SFD的输入输出功能。提出了雷诺方程的数值解法,使用了具有适当边界条件的有限差分(FD)公式。这为通过Chebyshev插值识别SFD提供了基础数据。通过将其应用于简单的转子轴承系统,首先针对基本(FD)模型对识别出的“ FD-Chebyshev”模型进行了验证。通过与已发表的实验结果进行比较,证明了使用FD-Chebyshev模型进行振动预测优于简化的分析SFD模型。然后,在领先制造商提供的具有实际规模的代表性双阀芯航空发动机模型的全发动机分析中,实施了增强的FD-Chebyshev方案。与基础(FD)模型相比,反复证明了使用新颖的Chebyshev多项式技术可以将计算时间减少10倍或更多,而对精度几乎没有影响。然后将重点转移到经验识别技术。介绍了鉴定测试台及其相关数据采集系统的调试细节。最后,提出并充分验证了SFD力函数的经验神经网络识别过程。当在测试装置的转子动力学分析中使用时,训练有素的神经网络显示出能够以显着的准确性预测复杂的非线性现象。结果表明,神经网络能够捕获给定SFD难以建模或特有的特征的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号