首页> 外文OA文献 >Mathematical and numerical modelling of shock initiation in heterogeneous solid explosives
【2h】

Mathematical and numerical modelling of shock initiation in heterogeneous solid explosives

机译:非均匀固体炸药冲击起爆的数学和数值模拟

摘要

In the field of explosive science, the existence of the ‘hot-spot’ is generally accepted as essential to any theory on shock initiation. Continuum-based shock initiation models only account for ‘hot-spots’ implicitly, and the majority of these models use pressure-dependent reaction rates. The development of a simple but physically realistic model to predict desensitisation (double shock) effects within the confines of an existing pressure-based model is described and simulations compared with experimental data with mixed results. The need to invoke a separate desensitisation model for double shocks demonstrates that reaction rates are not substantially dependent on local pressure. The newly developed continuum, entropy-dependent, CREST model has been implemented and validated in a number of hydrocodes. However, the move to entropy-based reaction rates introduces a number of computational problems not associated with pressure-based models. These problems are described, in particular, an entropy-dependent model over-predicts the rate of energy release in an explosive adjacent an impact surface, and requires a finer mesh than a pressure-dependent model to achieve mesh converged results. The CREST model, fitted only to onedimensional data of the shock to detonation transition, is shown to be able to accurately simulate two-dimensional detonation propagation data. This gives confidence in the predictive capability of the model. To account for ‘hot-spots’ explicitly, a simple model to describe ‘hot-spot’ initiation has been developed. The simple model is presented where ‘hot-spots’ are formed as a result of elastic-viscoplastic stresses generated in the solid explosive during pore collapse. Results from the model compare well with corresponding results from direct numerical simulations, and both are consistent with observations and commonly held ideas regarding the shock initiation and sensitivity of heterogeneous solid explosives. The results also indicate that viscoplastic ‘hot-spot’ models described in the literature are built on an invalid assumption.
机译:在爆炸科学领域,“热点”的存在被普遍认为是任何引发冲击理论必不可少的。基于连续谱的冲击引发模型仅隐式地说明了“热点”,这些模型中的大多数都使用了压力相关的反应速率。描述了一个简单但物理逼真的模型的发展,该模型可在现有基于压力的模型范围内预测脱敏(双冲击)效应,并将模拟与具有混合结果的实验​​数据进行比较。对于双重冲击需要调用一个单独的脱敏模型表明,反应速率基本上不依赖于局部压力。新开发的连续体,依赖于熵的CREST模型已在许多液压编码中得到实施和验证。但是,转向基于熵的反应速率会引入许多与基于压力的模型无关的计算问题。特别是描述了这些问题,熵相关模型过度预测了撞击面附近炸药中的能量释放速率,并且需要比压力相关模型更精细的网格以实现网格收敛结果。 CREST模型仅适用于从冲击到爆炸的一维数据,显示出能够精确地模拟二维爆炸传播数据。这使人们对模型的预测能力充满信心。为了明确说明“热点”,已经开发了一个简单的模型来描述“热点”启动。提出了一个简单的模型,其中的“热点”是由于孔洞塌陷期间固体炸药中产生的弹粘塑性应力而形成的。该模型的结果与直接数值模拟的相应结果相吻合,两者均与关于非均质固体炸药的激波产生和敏感性的观察结果和普遍认为一致。结果还表明,文献中描述的粘塑性“热点”模型是基于无效的假设建立的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号