首页> 外文会议>Eleventh International Detonation Symposium Snowmass, Colorado August 31-September 4, 1998 >Hot spot growth in a thermal-chemical-mechanical reactive flow model for shock initiation of solid explosives
【24h】

Hot spot growth in a thermal-chemical-mechanical reactive flow model for shock initiation of solid explosives

机译:固体炸药冲击引发的热化学机械反应流模型中的热点增长

获取原文

摘要

The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes fo hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mum in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed.
机译:具有完全耦合的热化学机械材料模型的三维任意拉格朗日欧拉流体力学计算机代码ALE3D,为开发固体炸药的激波起爆和物理逼真的模型提供了框架。现在可以使用Arrhenius化学动力学速率定律和热量来模拟在冲击压缩过程中形成热点的过程,随后发生的反应或反应失败,各个热点中反应的增长以及在过渡到爆轰过程中反应热点的聚结的过程。转移以传播反应流。本文讨论了HMX和TATB中反应热点的增长速率以及它们在爆炸到爆轰过渡过程中的合并。发现热点爆燃速度足够快,以在典型的冲击持续时间内消耗直径小于10微米的爆炸性颗粒,但是较大的颗粒必须破碎并产生更多的反应表面积才能被快速消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号