首页> 外文OA文献 >Metal oxide catalysts for carbon nanotubes growth : the growth mechanism using NiO and doped ZnO
【2h】

Metal oxide catalysts for carbon nanotubes growth : the growth mechanism using NiO and doped ZnO

机译:用于碳纳米管生长的金属氧化物催化剂:使用NiO和掺杂的ZnO的生长机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis describes the preparation and characterisation of novel oxide catalysts (NiO and doped ZnO) and catalyst free growth of carbon nanotubes (CNTs). Additionally a new growth mechanism has been proposed for these oxide catalysts, based on intra-granular charge transfer and lattice strain. The intra-granular charge transfer process is believed to help dissociate the hydrocarbon molecules and the lattice strain is believed to be responsible for the diffusion of carbon atoms through the catalyst nanoparticles. These two processes collectively give rise to CNTs growth. The materials were prepared through solid state reaction with a range of temperatures. The pellets were then thermally evaporated on to the substrates in order to use these catalyst nanoparticles for CNTs growth. The chemical state and the chemical environment of the dopants (Ni, Cu, Sm, Tb and Ho) in the ZnO host material were identified through x-ray photoelectron spectroscopy (XPS). It was observed through XPS that the mixed oxidation state of the dopants in the ZnO gives rise to the intra-granular charge transfer process. The crystal structure and the lattice strain produced by the incorporation of dopant ions into the ZnO matrix were observed through x-ray diffraction (XRD). It was observed that dopant ions produce lattice strain and the extent of it, depends upon the ionic radii of the dopants. The higher the lattice strain the higher will be the diffusion of carbon atoms through the catalyst nanoparticles. The size and shape of the catalyst nanoparticles were obtained using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive x-ray spectrometry (EDS) in the TEM and SEM was applied to see the elemental composition of individual nanoparticles and the pellets respectively. After growth the CNTs were characterised through SEM and TEM to see the morphologies and EDS for the elemental composition of the particle at the tip of CNTs. The study of these catalysts regarding the growth of CNTs showed that those catalyst nanoparticles with a strong intra-granular charge transfer mechanism and higher lattice strain gives rise to CNTs growth. The catalyst nanoparticles with dopants in their minimum or maximum oxidation states do not give rise to intra-granular charge transfer and hence no CNTs growth.
机译:本文描述了新型氧化物催化剂(NiO和掺杂的ZnO)的制备和表征以及无碳纳米管(CNT)的生长。另外,基于粒内电荷转移和晶格应变,已经提出了针对这些氧化物催化剂的新的生长机理。据信颗粒内电荷转移过程有助于解离烃分子,并且据信晶格应变负责碳原子通过催化剂纳米颗粒的扩散。这两个过程共同导致CNT的生长。该材料通过在一定温度范围内的固态反应制备。然后将粒料热蒸发到基底上,以将这些催化剂纳米颗粒用于CNT的生长。通过X射线光电子能谱(XPS)鉴定了ZnO主体材料中掺杂物(Ni,Cu,Sm,Tb和Ho)的化学状态和化学环境。通过XPS观察到,ZnO中掺杂剂的混合氧化态引起了颗粒内电荷转移过程。通过X射线衍射(XRD)观察了由于将掺杂离子掺入ZnO基体而产生的晶体结构和晶格应变。观察到掺杂剂离子产生晶格应变,其程度取决于掺杂剂的离子半径。晶格应变越高,碳原子通过催化剂纳米颗粒的扩散就越高。使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)获得催化剂纳米颗粒的尺寸和形状。 TEM和SEM中的能量色散X射线光谱法(EDS)用于分别观察单个纳米颗粒和颗粒的元素组成。生长后,通过SEM和TEM对CNT进行表征,以观察CNT尖端的颗粒元素组成的形态和EDS。这些催化剂对碳纳米管生长的研究表明,那些具有强的颗粒内电荷转移机制和较高的晶格应变的催化剂纳米颗粒会导致碳纳米管的生长。具有处于最小或最大氧化态的掺杂剂的催化剂纳米颗粒不会引起颗粒内电荷转移,因此不会导致CNT的生长。

著录项

  • 作者

    Wahab Hassan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号